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Preface

My thesis deals with topics in uncertainty reasoning, which Is appropriate since for

most of the duration I was uncertain about Just what my topic was. I spent many days

wondering just what I was supposedly doing. Although It could hardly be said that I

was apoplectic with apprehension, I was alternately concerned about, and oblivious to my

plight. Practicing avoidance and denial became a hobby, but unfortunately, as fate would

have it, the task before me never unilaterally abated. Many times the future of this thesis

seemed so very uncertain (at least to me). However, In the end the work was done, my

mission completed.

My advisor, Maj Bruce W. Morla&I, told me that he knew where I was going (exis.

tentlally, that Is). To him, I give thanks; the type of thanks one gives a dentist after an

unwanted root canal. He gave me encouragement and, at times, fear, both of which proved

to be motivational.

In retrospect, all that has passed has changed me, but all I really know is that I

feel older now. The people around me, my classmates and friends, I am beholden too. I

thank my advisor, Maj Bruce W. Morlan, for those Interesting, frustrating, exasperating

debates which always strayed from their original convoluted course. I thank my reader, Lt

Col Skip Valusek, for que,4tloning the things I took for granted, for catching tho abundant

small errors, and most of all, for not keelhauling me for my lack of communication. F•,r all

those who supported me in this endeavor, I bubble with gratitude. You helped me by just

laughing with me and, at times, at me. I like most of you and will miss some of you.

Scott E'. Deakin
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AFIT/GSO/ENS/89D.3

Abstract

Incorporating techniques for coping with uncertainty in the decision support systems

has proven to be a fertile environment for creative Ideas, Representations of uncertainty

abound and no representation can be said to be inherently incorrect. From a theoretical

standpoint, a viable solution must be coherent and logically consistent. Probability theory

demonstrates these characteristics while, as of yet, other methods do not.

The purpose of this study was to Investigate specific topics in uncertainty reasoning:

1) Probability ratio graphs as a representation of the probability model; 2) Dealing with

missing information when system parameters are left unspecified; 3) Investigating the

difference between probabilistic and causal Independence; and, 4) Characterizing seconditry

uncertainty as spurious evidence and including it in the inference process,

It was shown that probability ratio graphs are a viable method for representing

uncertainty, and a method for representing independence with probability ratio graphs is

presented, Assuming probabilistic independence for missing information is shown to have

intuitive and computational benefits; also shown Is that where secondary uncertainty Is

included in the inference process has great impact on the computational complexity of an

Inference process.
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An Investigation and Interpretation

of

Selected Topics in Uncertainty Reasoning

L Organization

I was to learn early in life that we tend to meet any new situation by reorga-
nizing... and a wonderful method it can be for creating the illusion of progress
while producing inefficiency and demoralization.

-Petronlus (died A.D, 66)

The need for access to expert opinion and analysis when qualified experts are i

scarce commodity Is driving the development of artificial experts. These artificial experts

are known as expert systems, and through their use, expert opinion and analysis is ac.

cumulating, and becoming transportable and standardized. If these systems are to be

useful they must address and meet certain requirements. Some important requirements

are the capability for handling large quantities of information, dealing with uncertainty,

and heuristic control of the search space. Computer based expert systems provide the

important capability of rapidly handling large quantities of data. lHowever, combining the

computer's capabilities with experts' experience and heuristic reasoning is proving to be a

formidable task subject to much debate.

Expert systems are complex automated checklists. Though the term ezpcrt sysicm

sprang from the field of artificial intelligence (AI), they have existed in principle under

other names and in other forms, Artificial intelligence provided an alternative to classical

operations research (OR) in solving complex problems; OR applies optimization techniqupes

to complex problems expressed in real numbers, whereas, Al applies heuristic searclh to

complex problems that defy classical OIL techniques. Most complex problems, especiaily

those expert systems face, would benefit fromi a combination of both Ol. andl Al techni(piIP

(17:11): OR can provide probability and decision theoretic techniques for dealing with



uncertainty, and AI can provide heuristic control for managing the exponential explosion

to which probabilistic systems are vulnerable.

Researchers have recognized the usefulness of a symbiosis between OR and AL, They

are incorporating probability and decision theory into the development of expert systems

(Kalagnanam and Henrion:1988, Breese and Fehling:1988, Heckerman:1988). Along these

lines, Hollenga codified a method for developing expert systems that utilizes the synergistic

effect of combining OR and Al. In his paper "A Declslon.Theoretic Model for Constructing

Expert Systems," he outlines a five step process that incorporates Blyeslan reasoning in

the development of the expert system rule base:

1. A group of decision makers decides on strategy implementation.

2. The output of the first step is then translated into a decision analytic framework
where hypotheses, evidences, strategies, probabilities, and utilities are identified.

3. From the second step, probability thresholds are Identified, These thresholds Indicate
the strategy with highest utility.

4. Executable rules are then generated such that only the evidence is needed to deter.
mine an action.

5. The last step is encoding the executable rules Into a format that an expert system
can manipulate (8:3-8).

Ilollenga's method involves using decision analysis to generate the export system rule

base. In effect, the decislon-analytic framework becomes the export for rule (dlVeoli••net

(8:8).

1.1 Thesis Research

Ilollenga's process is a conceptual nodel which noeds an architecture for r'vs('rchI

into Its practical feasibility, A research tool that enables research into the capability cuf the

aforementioned process goes far In supporting investigations into the implications of he

proposed Clmethod.

Morlan proposes probability ratio graphsi as a method for manipulating relational

Information (13). Reprosented In this way, decisions and Inferences depond o•nl the relative

2



weight of the propositions. The odds-ratio structure presents a graphically appealing

method for user comprehension where conditional relationships are visually evident.

This thesis used Hollenga's proposed five step method as a starting point for research

into uncertainty reasoning. The development of a research tool for investigation into IHol-

lenga's proposed five step method (specifically, step three) provided a means for further

refining Morlan's concept of probability ratio graphs and generating questions about un.

certainty reasoning. Several Interesting topics of concern arose: representing independence

in probability ratio graphs, generating missing evidence, the meaning of independence, and

secondary uncertainty and spurious events.

1.* Research Objective

The objective of this research was to investigate questions about uncertainty reason-

Ing and further refine the probability ratio graph concept. The methodology centered on

developing a PC-based research tool for investigating the nuances of liollenga's five step

method for isolating questions about uncertainty reasoning and applying probability ratio

graphs. The resulting computer program Is a secondary deliverable; it is conceptually con-

cerned with the propagation and visual representation of probability and utility relational

information using an odds-ratio approach.

1.,3 Research topics

During this research several topics arose that were of some interest, These topics

spawned questions of interpretation where the answers were ill-defined and not hinniedi-

ately obvious. The design heuristics of decision support systems depend in part on the

Interpretations that result from these considerations.

9 When system parameters are unspecified, how should a diagnostic system deal with

the missing information?

* Under the common assumption of disjoint hypotheses, what does hypothesis-evidence
independence mean?

* What is the meaning of spurious evidence, and how does it afrect the diagnostic
system?

3



1.4 Scope

There are many proposed methods for representing and coping with uncertainty

(certainty factors, fuzzy sets, Dempster-Sheafer, Bayesian Inference); each method has

good and bad facets. As in any situation, the problem at hand drives the choice of the

tool. Misapplication of a tool can have potentially damaging effects which cannot always

be predicted.

This research uses probabilities for representing uncertainty due to demonstrated ad-

vantages: It provides well.known ways of incorporating empirical data, has well developed

methods for evaluating judged or computed probabilities by comparison with empirical

frequencies, and has been shown that for any reasonable scoring rule, any scalar measure

of uncertainty is either worse than probability or is equivalent to it (7:2).

1.5 Summary

Growing Interest in expert systems, specifically incorporating probability and d(cl.

sion analytic techniques In the generation of expert systems, was the motivation for this

research effort. Hollenga's five step method for expert system generation and Morlan's

probability ratio graphs for probabilistic knowledge representation present two Interesting

ideas that address the problem of including uncertainty reasoning in such systems. Pro-

gram development dealing with both of these areas uncovered the research topics doscrhlwd

above, Chapter II presents a view of the current state of uncertainty representaitlon 1111d

reasoning; there does not seem to be a "correct" interpretation, in that the validity of

one method does not rule out other methods. Chapter III addresses Morlan's probability

ratio graph concept and briefly describes the curreiit state of the created software that

deals with probability ratio graphs and ilollenga's five step method, Chapter IV presents

the research topics on missing Information, Independence, and second order uncertainty.

Chapter V contains conclusions reached about the topics in this i iesis, as well as possible

areas for further research.

4



II. State of Uncertainty Reasoning

S.I Background

When problems become even moderately complex the human mind founders III i

quagmire of Information, Recognizing and reacting In situations when the available In.

formation In Incomplete' or Insufficient,2 or filtering an abundance of dataa for pertinent

Information, can quickly overwhelm even the brightest among us. At such times we In.

variably search for help in making sense of this seemingly chaotic Information. Managerial

sciences, operations research, artificial intelligence, statistics, decision theory.,.all of these

fields' purpose is to condition and muesage an abundance of information into an organized

structure with a relatively small set of discriminating featuros so we can make sense of the

data and make rational decisions based on the data. In general, experts employ similar

conditioning and massaging schemes and either make decislion• or advise those who do,

More complex and costly problems require more precise and accurate answers. Nacod

with limited experts and Increasing demand, decision makers have to rely on buic rules of

thumb and procedures provided by experts which may apply to their problem. For complex

problems these rules of thumb and procedures become inadequate causing the decision

maker to suffer from the information ailments (incomplete or insufficient information, or

information overload); he is unable to process the available information coheirently lind

thus, the decision suffers,

Expert systems are an attempt to create automated checklists thiat are capable of

handling complex problems, They fill a need for access to expert knowledge and judg.

ment when true experts are a scarce commodity. Through the usc of export systems,

experts' knowledge and judgment becomes transportable and cumulative, Knowledge eln.

gineers distill experts' knowledge and judgment, and condense it into i predeflned structit Ir

I Incomplete informlation-ln many cues of decision making the situation Is under apeciflied. 'i'e aval•ail
Information may be either ill.defined (va•ue) or Imprecisely defined, (9z66e)

2Insuflcient intformation-In these cases the additional Information| is potenltially there, but a saplarate
and specific effort is required to bring it out (projections, correlations). (01606)

"3informnation overflow-This is the cae of too inuch information, The decision iniakr drowns lit infer.
mation which by far exceeds what he can process or comprehend at the time of decision. (0:667)

5. . .. .



(knowledge baae) that an "inference engine"4 can logically mauipulato Lu arrive at the suauv

conclusion as an expert given similar circumstances. Expert systems that rely on these

translated rules are heuristic in nature and are subject to translation errors resulting It

rules that do not capture the experts' true diagnostic process,

As outlined above, there are two facets to the problem of automation: 1) Conditioning

abundant information to produce relatively few measures that approximately definh the

state of the world, and 2) Interpreting the resulting measures and making decisions based

on them. In developing systems with greater autonomy researchers must support these

facets, meeting tihe Implied requirements of well defined scope, large information handling

capabilities, information filter, projection or forecasting, recognize incomplete Information,

handling uncertainty, coherence and rationality, while avoiding the problems of Imprecise

translation, These requirements call for both mathematical precision and hieuristic control,

Operations Research (OR) and Artificial Intelligence (Al) are two fields that are

concerned with the problem of supporting decision making by providing high level inter.

pretation of the state of the world, Simon provides working definitions of these two fields

with the understanding that both fields are not bounded by these definitions,

Operations research may be defined as the application of optimization tech.
niques to the solution of complex problems that can be expressed in real nuin.
bers, The criterion function, which determines what is to be optimized, must
also be quantitative, This definition iN clearly too narrow to encompass all
the things that operations research professionals do,,,but it charttctorizel tith
predominant emphasis upon formal mathematical models and optlimizattio,,,

By contrast, artificial Intelligence Is the application of method% of hieurixtic
search to the solution of complex problems that (a) defy the mathematics of
optimizatioti, (b) contain nontquantitative components, (c) involve large knowl.
edge bases (including knowledge expressed in natural language), (d) I ncorporate
the discovery and design of alternatives of choice, and (e) admit Illispeelfled
goals and constraints,

This characterization of Al does not sat very definite boundaries, It might
be regarded more as a hunting license than as a proper definition, It anipluhiszeoN

-4hference engine - also known u control structure or conflict relolutiont similar to al ligorltitm blit
more general and lea. precise, The way facts, rules, and parts of rules are manipklated is conttrolled by thi
inference engine (16:99).

S. . . . . . . . . . . . . . . . . .



the aspiration of Al to dea.l with all the apects of itmmaigerial dIeL(isimiI •takilg
that stretch beyond the limits of classical OR, (17:10.11)

Most problems have components that are best handled with OR methods and other

components that are better addressed with Al's heuristics, It Is, therefore, advantageous

to combine and synthesise OR. and Al, supporting, reinforcing, and txtendilng each other

(17:11). Others have also recognized the usefulness of a symbiosis between Ol. and Al.

One area of interest Is the Incorporation of decision theory into thle developineitt of oxpirt

systems. Kalagnanam and Henrion, Breeso and Fehling, and lieckrrman, to name a row,

have produced research in this area, Combining OR and Al methods has great potential

for producing more powerful decision support and autonomous systemns. Though united iI

the goal, researchers are divided on the path and what final form these symbiotic expert

systems should take,

0,8 Automating the Ezpert

Automation Is the "automatically controlled operation of an apparatusl, process,

or system by mechanical or electronic devices that take the place of humani organs of

observation, efortn, and decision," When speaking of automating a process, care must be

taken to specify to what degree the process is automated, Thlere Is some automlltilon iI

every action that relies on a machine or tool, The goal of automation is not to remove the

power of human self determination but to relieve the human front the burden of inundttlit,

or information intensive tuks so that more worthy undertakings can he pursued, It also

allows for the speed many operations require and wihich hiumatns canllot provide,

A major point of contention on achieving autonmation is the uidirlyhig iltlosol)hy

of current and proposed methods. Export systems are proving valuatile in autonmntinjg

decision support and process control, liowewvr, them quality of these expert systemVII is

questionable due to Imprecision, uncertainty, anli, InI part, to tile "diis5'uragilig obsel'vat.

tIon,,tlmat today's Nystems seem to be successful bectuse they itre 'hand cru'ftod' ralittme

titan bectutie they apply a set of proven techniques and methods" (10-:7ri1). 'T'hemse 'Ihmnd

crafted' methods and ingenious heuristics are tile source of inuch iphilusophic debate on



the formn that these mystenistl8 sould take'. Thew methods for inanipuhiti ug m ico'rt.nin ty coiii'

under scrutiny as does expert emulation and rationality In the artificial decision maker.

04.1 Uncertainty Uncertainty Is generally characterized aa resulting front stocitas-

tic processes, linguistic vagueness, and subjective belief, Stochastic uncertainty Is usually

measured with statistics and arise. when referring to random ev-qnts much as rolling a die, or

spurious events like accidents or faulty readings. Linguistic vagueness results from illhlpro-

clue definition whore terms have variable meaning.; comparo numbers which are discrete

and well defined, a~nd therefore, not vague (two, three,.), with "a few," Zadeli developed

the concept of fusty sets to deal with such vagueness. Subjective beliefs are tite pie.

dominant source of uncertahity; subjective uncertainty prevails In one-of-a-kind situations

where someone makes an assessment, Bayesian statisticians argue that It Is the only type

since subjective Interpretation Is Involved In communication and data assimilation (18:8).

Whatever its source, a successful expert system must bie able to deal with uncertaluity,

Probability Is perhaps the method best known for representing itincertainty, aas Is classicid

Bayesian Inference, for reasoning uinder uncertainty. It Is valid andi has a sound theoreticid

foundation. However, classical fayeslan evidential reasoning becomes so coinpu tation idly

Intensive as to be Intractable when applied to a non-trivial decision p~roblemi, "It requires

a detailed listing of all possible scenarios which Is mimv'ssible. The apparent neoed for (it]

huge distribution of cases Is the major objection to using Bayesian p~robability theory III it

real expert system," (18:8) Various methods (certainty factors, fuzay Net theory, Denipster.

Sheafer thteory) aroupe controversy when they avoid Bayesian condItioning In anl attemtpt to

skirt coniputatioital Ititractablil~ty (12:271), Kyberg states, "iion-lBayeslaii updlating yilvds

more determinate belief states as outcomes, but the beiieflts afforded by tion-iinyeolaii

updating are limited and questilon able."( 12:285)

All methods for dealing with uncertainty must have samte mneautre which charact r.e

the amounit of uncertainty there Is in a proposition and some Interpretation of that mo~IWI5I(

The following four miethods are Nmone of the more well kiiowit theoriem for ('iiltriteriliilM

uncertainty.



9,.1.1. Bayesian Probability theory Probability Is an assessment about the

frequency of events. Its roots lie in games of chance (dice, cards, roulette, etc...), where

the probability of an event Is the number of possible occurrences of t divided by the total

number of possible outcomes 8:

P(C) = ofeC
# of 8.0

An example Is the probability of drawing an ace out of a dock of cards:

# of Aces 0.07402
-'A .... = -- f ~~•

# of Cards 52

Probability reuoning is based on Bayes' theorents, which plays a central role it al.

ementary probability, It Is a general rule for the computation of a posterior probability

P(Ak 1 8) from prior probabilities P(A,) and conditional probabilities P(d I Aj) (De.

vore:60). This theorem presents the mathematical equation for coinbining probabilistic

assessments coherently and consistently:

PA 1 ) re rP( I A)P(A)

Hayes' theory is based nn conditional probabilities and allows for I)robabilistIc imlferemvcNe

when evidence Is observed, For Instance, lit the card exanmiple above, Ott' P(,A) " 4157

given that there are four aces li the deck. This is a conditional I)robability, its are all

measures of uncertainty, being conditioned at least upon the set. of posslble cards. All

events are conditional in that there Is a set of contditions whether explicit or hI1plicit that

exits or defines the situation for which i proposition Is valid,

There arc various arguments against using probability for reasoiting with uncer.

talnty, Two Important arguments are that it doesn't reflect the way people reitson and

that It becomes computatlonally Intractable, Arguments against probability Sliptrrod the

'Hayes' theorem Is named after Its eighteenth century originator, ltevereoid ''humu Ilayon,



development of other methods for representing and reasoning with uncertainty,

9,9.I.* Certainly Factors Certainty factors originated from Bayes' theorent.

They were developed to handle uncertainty In MYCINO when the Bayesian inferential

method became Intractable both computationally and with respect to data requirements..

In their book, "Rtule-Based Expert Systems: The MYCIN Experiments of the Stanford

Heuristic Programming Project," Buchanan and Shortliffa explain the development nf cer-

taInty factors ( 1).

Certainty factors represent uncertainty au reasons of belief using measures of belief,

MB(%,t ); and disbelief, MD(74,t) where W1 Is a hypothesis and t In anl evidence state,

These rnwaaures are computed separately, and are then combined to represent, the total

uncertai nty us a certainty factor, C F(N, C) a M B(71, e) - M D(%, e).

The MB and MD both range between 0 and 1, giving the CF a range of -I to

1. A positive CF Indicates more belief titan disbelief and, conversely, a, negative CP

Indicates more disbelief than belief, A CF of 0 Indicates that there Is equal belief In both

propositions Nt and notin (4:561).

Some criticisms levied against certainty factors are 1) that thec combining rules are

arbitrary, 2) they assume evidence Independence (5:9), anid 3) they do not have a sound

theoretic basils (4:502). Although certainty factors are deorived fromn probability theory,

they are not probabilistic, They abandon probabilistic rules In anl attempt to rodluee

the computational burden and dlata requirements. They work quite well as long aim the

reasoning path In short and the linherent orrors do not build up. howover, "it Is not difficult

to collie up With anl example InI which, of two hypothehes, the one with the lower p~robabiity

would have a higher certainty factor,., This failure to rank accordinq to probability Is anl

undesirseble feature of certainty factors." (1:200)

1,.1.7Fzzyjci St teoryi Fzxy sets are sets where t le bordors arei not c rimpl y

defined (tail, fast, heavy, etc-.). Linguistic uncertainty conmes fromi Just Lh&'N(, types of

terms whore the meaning canl vary from person to person. The uncertainty arsise fromt

'MYCIN Is it rule-based expert systemn used for niedical consultstion.i
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the interpretation of what someone else means when they use these terms. Fuzzy sets

attempt to represent sats as analog or continuous where conventional set theory is digital

or discrete.

With conventional set theory an item can be in one of two states wlth respect to a

set: In or out. Probability would represent the uncertainty between these two states. The

degree of membership Is not in question; it Is either all in one or all In the other. With

fussy sets, the degree of membership Is In question: how much In or how much out, A

member a's, at the same time, be In both a Net and Its complement.

Zadeh used fussy set theory to extend two-valued syllogistic reasoning to allow ai

Indication of doubt In the premises or conclusion, He accomplished thi, by attaching

arbitrary predicates to each teim of the syllogism:

Q1 A'. are O's

Q2 C's are la

Q3 C'. arc P'S

where Q1, Q2, and Q3 are numerical or, more generally fuzzy quantifiers (0.8, iossst,

many, etc.), and .A, 0,... are crisp or fuzzy predicates.

Fuzzy set theory lends itself t.) applications using a rule base. However, tihe rules

are directional and hnflexlble; they cannot take Into account factors that are not explicitly

stated itn the rules, making them context Insensitive (Independent froits conditions not

Included in the rule). Conversely, with Bayesian probability theory the connections Are

directionless and conditional Independence is explicit, not Imposed by the formal structuro
(18:8.10).

08*1.4 Dernpster.Sheafer theoi-y With Dompster.Sheafer tlhcory the unce r.

tainty in the probability assessment Is Implicitly represented as unattributed probability,

For instance, given two mutually exclusive and collectively exhaustive events: A and uolA,

P(A) s .6 and P(noiA) w 1, the remaining ,3 is loft unspecified. This unspecifled probes.

bility represents the subjective Ignorance about tihe objective probability of ., wfhich coulld

ii



lie anywhere between .6 and .9. The inclusion of the unspecified probability constitutes a

type of sensitivity analysis, It delineates the precision of the Information and the improve-

ment that may be possible In gathering further information about A, Probability theory

can accomplish this samne task by explicitly representing the subjective Ignorance (18:9).

Today it seems u If there were a conflict between the Dayeslans and the
Shaferians in the field of Al applications of probabilistic Inference. True, this
seems rather to be the Bayeslans' stand...The view of the other position is that
Shafer's theory Is a generalization of Bayesian theory, thus seemingly implying
broader possibility of applications...

The point here Is that Dempster's rule can be understood as a generalization
of Bayes theorem, but it Is not the unique possible generalization. It is this
non.uniquenees that creates the justification problem...

In general, we can say that recent work in the field called, among philoso.
phers, 'probability kinematics'.,has shown that there exists an entire class of
kinematics or generalized conditionals in the bellef space given by all admissi.
ble probabilities in a frame of discernment, and that conditionals (both Bayes
and generalized) are nothing more than rules for combining posterior bodies
of evidence with prior bodies of evidence, The belief space Is endowed with
certain structure and a particular operation: provided that different conditions
hold, this operation reduces to different conditionals or different combinations
rules u Its own particular cases, (21:09.410)

The choice of whicht method to use Is not clear, The debate seemis to loan In tile

favor of the Bayesians, However, both methods claim a following, and the choice of which

to support seems to depend on context, Garbollno goes on to suggest that,

There is no mechanical method for deciding which probabilistic rules of
inference to apply in P. given decision problem, This decision is a meta-decislon
which depends upon the ingenuity of the decision.maker and his assooiates in
analyzing the problem, upon the logical structure of the frame iln which it is
possible to embed the problem, upon the 'quality' of the available evidence
and upon the constraints In time and resources (even computational resources)
which could prevent a refinement of the frame of discernment. (2:715)

So the method Is left up to the decision.maker and Is context dependent, Still it

possible guideline Is that the chosen method should adhere to logical coherence, With thli,

in mind, Garbollno provides a basis for choice:
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The updating procedure for a knowledge-base Is a two.step procedure; the
first stop is calculating the degree of support provided by the new evidence; the
second step is updating the process properly said, that Is, propagating the effect
of the new evidence through the knowledge.base, maintaining its coherence.
(3:735)

Ba~yesian updating accomplishes these two steps simultaneously; Shafer's updating

acomplishes the first one only and, if one is interested in coherence, it raises the need to

supply to the Inference engine a "coherence maintenance" mechanism (3:730),

It is not clear that there Is a "correct" method for dealing with uncertainty, Applica.

tion determines the tool that should be used. Of the four methods listed, fuzzy set theory

attempts to quantify lingulstic uncertainty and certainty factors are a heuristic derivation

of probability theory attempting to control computational and data burdens; probability

theory and Dempster.Sheafer theory attempt to describe general uncertainty and support

it with a theoretical foundation.

Of the four methods above, Bayeslan probability is the only method that demon.

strates consistence and logical coherence, The other methods, though are in some sense

appealing representations, are restricted due to their lack of demonstrated consistence and

coherence.

[hyberg concludes])...1) That the treatments of uncertain evidence in both
Bayesian and non-Bayeslan updating are reducible to the corresponding treat-
ments of certain evidence, and iii) that non.llayeslan updating yields more
determinate belief states as outcomes, but that the benefits afforded by non.
Bayesian updating is limited and questionable, (12:286)

Thit doesn't end the debate, for the real roots of controversy lie in the criticismn that

people do not use probability for reasoning, and thus follows the disagreement between

those who support the normative view and those who support the descriptive view, Tills

disagreement over representation is more philosophical than methodological. Probabilists

take the normative view, saying that uncertainty should be represented not as people see it,

but as they should If they want to act consistently and logically. Proponents subscribing to

13



the descriptive view believe that uncertainty should be represented in a manner consistent

with the way people represent it (15:3).

R.84 Emulation When the expert system rule base is compiled, knowledge engi-

neers attempt to capture the knowledge, judgment, and diagnostic process of the expert,

Often the translation from the expert's framework into the rule base Is imprecise, resulting

in rules that do not capture the true experience of the expert. This is not surprising since

humans are not machines and do not think u computers process information. "The foun.

dation for human reuoning ls,..rather vague, since on the whole the mind must still be

considered as a black box" (10:745), Because the human reasoning process evades explicit

understanding, the task of emulating the expert is practically impossible. The best that

can be hoped for is good pattern matching (9:676),

F1or uses where rational reasoning is desired, attempting to emulate humans seems

to be misdirected. As Garbollno states, "a procedure which models natural reasoning

yields a conclusion based upon natural reuoning, not a reasonable conclusion based upon

reasonable reasoning" (3:730), However, natural reasoning should not be abandoned Just

yet, because, though we lack the quantitative skills to handle data efficiently, humans can

adapt and function In unknown territory:

Human reasoning is generally acknowledged to be inefficient in terms of
accuracy and speed, but highly efficient in terms of versatility and the ability to
comprehend novel events... Artificial systems, on the other hand, must be told
everything beforehand. If the domain is sufficiently simple and well-described,
an artificial system may do well and may even surpass humans in terms of
sheer reasoning power (speed, endurance, precision). But if the domain Is more
complex, and in particular if novel situations can arise, the ,trtificial system
will probably encounter serious difficulties, (10:743.746)

The strength of human reasoning lies in its adaptability; its ability to reason about

the unknown, If the fundamental mechanisms underlying human thought canl be captured

In a computer system, then artificial intelligence will no longer be all oxymoron, Capturing

the underlying process is a worthy goal, but until the fundamental mechanism Is captured,
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attempts to emulate the human mind will remain empirical in nature and, therefore, be

restricted In applicability.

I.A.$ Rationality The Importance of a rational decision maker in automated sys-

tems stems from the issue of responsibility. "Users often rely blindly on the programs

they use, e.g. large statistical packages, and the faults in these programs therefore have

potentially serious consequences" (9:676). To avoid unpredictability, a system must ex.

hibit logical coherence?, A system should reach the same conclusion when given the same

evidence regardless of the order in which It is presented5 .

A perennial question concerns the level of rationality of the decision maker,
hence the quality of the cognitive processes that must be described. It is gen-
erally acknowledged that decision makers are far from being rational in any
normative sense. The question remains, however, whether decision makers
should be considered as inherently irrational-and accordingly in conflict with
established decision principles-or rather as quasi-rational, i.e. striving to per-
form according to rational principles, but falling to do so (because of cognitive
limitations, etc.). (9:671)

The term quasi-rmtional is essentially bounded rationality. Bounded rationality is

a model of how decisions are made, People make decisions based on maximizing utility;

limitations on the amount of information and the ability to process it coherently cause the

appearance of bounded behavior (14).

If your task Is to build a machine for simulating (the] human mind, then
it is true that coherence Is not relevant, and if you will succeed in building an
incoherent machine, you will be a good scientist indeed. But if your task Is,
more modestly, to build a machine for "Intelligent decision support," then, if
you do not care about the logical coherence of your machine, you are a new
Dr. Strangelove. (3:735)

'To be logically coherent, beliefs must not be self-contradictory; a knowledge.base must not contiLn ait
the same time a proposition and its negation (3:729),

"Srhis does not mean that sequence of occurrence is Irrelevant, However, if sequence is important theen

it evidence that should be Included for consideration.
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It seems the prudent course of action would be to apply artificial systems ill ways that

they are efficient and capable, helping the decision maker remain rational. This means ex-

ploiting their ability to keep track of large amounts of information and the inter-relationship

of it, while keeping focused on the guiding principle of logical coherence throughout system

development.

1.8.4 Decision Analysis Decision analysis Is Ideally suited for decision support if

logical coherence is a criterion for selection. Decision analysis tackles rare problems that

are large and cumbersome, providing organization and methodology for logical reasoning

in decision making. Decision analysis has been employed for complex decision problems

because it is rational and logical, consistent, and can Incorporate utility into the decision

process.

Decision analysis (D/A) provides the techniques to allow for an explicit
representation and organization of the decision factors, such that logic can be
applied to identify the preferred decision strategy. The axioms on which It is
based provide a set of criteria for consistency among beliefs, preferences, and
choices that "should" be adhered to by a rational decision maker, The D/A
methodology provides a systematic way to choose among alternatives by con.
sidering the problem structure, uncertainties, and relative utilities of pursuing
different options. Finally, the process of developing probability and utility es.
timates yields a model that can be validated piecemeal, yet with a structure
that ensures a level of validity in the completed model, and a methodology for
validating the completed decision aid. (8:2)

The pursuit of a rational decision maker can succeed through the use of decisloti

analysis. Furthermore, because decision analysis uses Bayesian inference for evidence, in.

nipulation, it is coherent and therefore conforms to the philosophical requirenents outlihed

above, Recent research is lending suppo.t to the conclusions of this philosophical approuch,

Kalagnanam and ilenrion compared decision analysis and expert rules for sequontial dImig.

nosis:

The results of this study clearly indicate that the test sequences provicllo(i]
by the experts (in the task domain) are suboptimal. Unfortunately, there Is
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uncertainty regarding the objectives which motivate the expert test sequences.
This restrains us from drawing firm conclusions about the efficacy of human
Intuition for this task domain. But it Is Important to remember that one of
the experts accepted the validity of the C/p 9 sequence and felt that the results
are likely to be of practical Interest. This suggests that the normative theories
of decision making are capable of obtaining results which go beyond current
expert opinion. (11:211)

Heckerman relates a situation where an expert user noticed a marked Improvement

in the performance of a diagnostic system when they changed the inference scheme from

one based on Dempster-Shafer theory of belief to one based on a special case of Bayes'

theorem. In this study, Ileckerman compared three inference approaches:

e a special cue of Bayes' theorem

* an approach related to the parallel combination function in the certainty.factor (CF)
model

a a method Inspired by the Dempster.Safer theory of belief

Heckerman points out the observed superiority of the method based on the Bayesian

approach (6:158, 166.168).

To date, automated systems are still just computer code and cannot replace humans

for the chore of facing unique situations. The domain of an artificial system m~ist be

completely specified beforehand. "Put simply, unless the system knows about something,

it is unable to reason about It" (10:746). Decision analysis has proven to be a rational,

consistent decision maker' This makes it ideally suited for reasoning with uncertainty in

automated systems. Until a sound foundation for understanding human thought can be

quantified and codified, emulation of the human expert by computers is a field where smoke

and mirrors prevail and only systems endowed with artfully constructed heuriuticn play.

9C/p refers to the algorithm used in the study. 'C' refers to the cost of tepting a compoltent Mild 'p'
referb to the probability of that component failing.
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*.3 Summary

This chapter presented a view of the present state of uncertainty reasoning and expert

systems from both an operational and a philosophical perspective, As presented above, the

representation of uncertain knowledge has many possible paths that are intuitively pleasing

in presenting different concepts of uncertainty. Questions about applicability arise when

the methods are used for reasoning with uncertain information. The fact that the methods

are different isn't an Immediate problem; the lack of consistency and logical coherence Is

a problem. Probability theory demonstrates these properties while the other methods do

not. From a theoretical standpoint, the lack of consistency and logical coherence is a major

litmus test; if a method does not demonstrate these properties they are buically empirical

in nature and have a restricted range of validity, For operational use an empirical method

is as good a a-sy as long as it operates within Its valid range.

Though probability has a firm theoretical foundation, there remains room for rep.

resentation and Interpretation of the probability model. Chapter III presents probability

ratio graphs which is a representation of the probability model. Chapter IV presents sov.

eral interpretations on how probability deals or can deal with some differing facets of

uncertainty.
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I[1. Probability Ratio Graphs: An interpretation

And what is a weed? A plant whose virtues have not been discoveired.
-Ralph Waldo Emerson

The buic architecture addressed by the research tool Is an Implementatlon of the

format described by Morlan In his paper "A Decision Analytic Approach to Building Eper'i

Systems, * In this paper Morlan develops a format based on odds.ratios for representing a

decision analytic framework with probability ratio graphs. le points out that the chosen

representation for a mathematical model unly serves to clarify meaning for the model

builder and hu no effect on the underlying mathematics, (13:1) The odds.ratio formint Is

ideal for representing the Information required for the decision analytic approachi

1. P(Cj I %j) - the cunditional probabilties or likelihoods for the evidence and hy.
potheses.

2. P(711) - tho prior probabilities for the hypotheses.

3. U(Ah( I %j) - the utility Information for the hypotheses attd actionst.

The information listed Is needed for making optimal decisions under uncertainty,

Morlan shows that the relative utilities between competing actions is Impozrtant, not the

absolute values, The information needed for determining those relative otilitix Im cotizthilod

in the rans between the hypotheses and actions, (13:3) The followhig discusslon oil

probability ratio graphs is adapted front Morlan's work and is only ain overview of tiv.,

material contained therein2 ,

'This notation, U(As, I M), represents the utility of perforilnn action Ah whets hypothesis X', Is the
true state of the world (13t13).

'The forthconting discussion is a condensed, 8apted version of Morlan's presentation. Sonv aroun h~v,

been siniplified and other aspects interpreted, For an in-depth inatheinatical preseintatiou, tit orili:tud
document should be solicited,
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3.1 Probability ratio grephs

The research tool employs probability ratio graphs for representing the likelihood,

prior, and utility information necessary for using the decision analytic approach, There are

many approaches for representing probability (Venn diagrams, contingency tables, causal

nets, probability tr..s, to name a few). Probability ratio graphs present another face In

the crowd representing the same mathematics of probability, They are simnilar to Influence

diagrams and causal nets, providing a method for decomposing ungainly probability models

into manageable configurations, However, probability ratio graphs offer advantages when

addressing the concerns of completeness and validation, They also clarify Implication, of

independenc, assumptions by explicitly mapping the transfer of statements about causal

dependence Into the mathematics of probability distributions.

The fundamental concept underlying probability ratio graphls In that in decisioin rnk.

ing the discriminating feature between competing alternatives is their relative meunro,

The ratio of their measures captures the Important Information In the decision analytih
sense.

The function of probability ratio graphs Is the representation and matnilpulation of

probability and utility relational Information, The representation Involves two blnie con.

structm: vertices and arcs, The mntnipulation function useN two buk i)rocteduroo: trlnngu.

lation and aggregation,

3.1,1 Representatlion Tihe first function of the iprobability miodul iN ruprostpiltih•g

marginal and conditional I)robabilitles, F'igure I shows how the two haIic constrictls l',

related In a compound probability ratio graph (0 will hereafter reprosent it probability ratio

graiLl). Various combinations of those constructs call roprmsent quite comp)iex Ilayeilan

inference probilems involving many levels o1' disjoint hypotheses mid their vorre•anttliing

evidence states. Tihe following definitions will hulp facilitate discussilo:

Eventl An aslginnwlt to a ritndloni vYarlahe, or Net of runidoiml itfl al' ,
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P(D) P(A) + P(D) + P(C) F P(G) P(X) + P(I)

FI'ure 1, A compound probability ratlo graphl

Vertexm An event and an embedded probability ratio graph. T'ho ovent
could be a hypotheses rapromutling a possible state of the world
or a posiuble evidence state which is usod to reason about the puo.
sible hypotheses, The embedded 0 represents coa•ditional prob-
abilities, conditIoned on the paront vertex,

Arai A directed weighted are connectIng two vortices which are on the
same level. It hu three assoclittod paramnotemr: lle:tl, 'l'Il, amil
Ratio,

((1iad, 't'Wa), Ratio)

The head can be thomught of is where the are orIghiattem,; likowlse,
the fail is where the arc ends. The ratio Is the rittlt) of the
probabilities, head to tailh W

Graphi A set of vertices, V, and a soet of ares, A, connecting thoe ver.
ticas, l'b be a legItimate probabiltyll ratio yimph two conmdltions
mout be unet:

1. The Nat of vertices, V. mntist form a Not oft of 1ittally exVclusive
oventm.

2*, 'Tlhe ares, E, inuot form a uliflumual spann:ilmmg tret, (it cycles).
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3,14# Manipulation The second function of the probability model Is Implementing

probability culculus consistently, Probability ratio graph. use two baic types of function"

to perform probability calculus: 1) triangulation, and 2) aggregation and divagrezation.

A A A

TI A t c t of a m , a ...,

a ... . I I l I I I

Figure 2. A graphlc depiction of triangullation.

Triangulationt Allow. the contiputation~ of & liiiili third arc, 5iYwh tl' tIwo

arc which together with tile third arc form a triangll, Figure 2
showa tile function of triangulationl It. ulse will brotulll' evidentt
In later exaniple.,

Exaniple Si - ___ i1t~F

Gilvon tile Pituation m deerribed In figure 2, triangulate hetwee11 vertihe(N fromt C' to
A:

,l(AJ)(j)iY '(O)

Note: 'Tlte arcN are directional, If the triangulation wit. froim A Lo C, tin,',

P(C) I
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V V
BB

Figure 3. A graphic depiction of aggregation.

Agregatlont Allows for the expansion uf an embedded 0 up one level while
maintaining the original probabilistic relationships, Aggrega.
tMon changes the probabilistic relationships of the einbodded
graph from conditional probabilitlis Into Joint probabilities,
Figure 3 is a* graphic ropreosntatlon of aggregation.

L Example 8,3 . ."egat7oz

Gliven the situationt as doot'ribed III figuro 3I, aggregate the vertic;eK A and C from E:

P'(A) P(IM ) ) P(k)

P'(A) +

Note: The original connections; and urc directlons deturmine how the iarc welghto
are combined.
Note: According to Morlan, the turin "aggregationm" refors to the trankfurnutthon of
two grapihs Into one graph,
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A N

D I
B B 

i

0+. DII' .(I+#

Figure 4, A gr&Lphle depiction of dimaggrogation•

Dl4aggregationm Allows for the collection of sevoral vertico Into one vortex which
thtn occupies the dimaigregated vertices places in tile original 0
and contains the dimaqgregated vertice as an embedded 9 In tho
new vortex. The reorganlning leaves the overall probability rala.
tionships Intact while representing the diNaggregated verticea m
conditional probabllitieu.

[Exmpl. 3......8~ D "-Z agureg,.t

Given the Nituatlo11 an deIL ICbOcd in figlre 4, disaggrcglate the vorticcm A and C": Firmt,
a triantgulation mitui ho porforillIed between A and c, the direc'ti, or trihitguliatioii
Is of no caniequolmn.
'lTriangulate from A to C giving z - , (x),

1)C / , nA) ( P(1))

"(P(I)

S*P(A)j+ P(c)._l,(ZJ) :,(|.

Note: Tie orilihal caonection. and tire dirertions determine how the nre wtight, nre com.-
blnled, However, tile dIfferellce. are Just a matter of Invortier| thie woighlts m atleodd
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Ilkag.ai Prior-ikeulihood configuration, _________________

SItgl Dialqlr.istion of prior vertices produce. '' • ,

thse Joint probabllity diatribiatlon,
NWJ

Joint P(I1,, 1,)

State: AllirDiat the comnmo evidence vertcp o.
to heoduco thu proapoltertor---poiterior cn. nlIuratlo

NJ, 81 1

II II , J im •

Flgu ro 5, Sluilpto alplllcatlo:m of llay('M' thteort':n at~ni ai I )ronlI blllty mnl lo gr~: lah •'oaaa I",f
with: taiblee.,2
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3.1.8 Bayesian in/rences With the forgoing tools for representing and manipulating

probabilities, an example of Bayeslan Inference Is possible. Figure 5 is a simple example of

a Bayesian cycle using probability ratio graphs with the corresponding tabular state. The

example In figure b shows that the 0 tranmitlon. through three different configurations:

1) Prior-Likelihood configuration, 2) Joint conflguration, and 3) Prepostetior-Posterior

configuration.

3,1,4 Utility reprsentation The utility representation follows the same path u

the hypotheses-evidence representation. Instead of conditional probabilities (likelihoods),

P(Cj I Xt), we have conditional utilities, U(Ak i 71j), which represent the utility of por.

forming action .A given that Hypotheses fl• has occurred, The process Is exactly the

same, except that Instead of the posterior probabilities, we are now iftor the proposterior

utility Information,

Utility Prio•s

o•untditlonial Utilities

LL

I'iguro 6, Utility ratio graph reprosentation.

With the utility rattio graph, the same ihtorl)rptatlatlm art l applied tu difrerent Int-

fornmation, The "prior" information IN a scaling factor between the lolatud conditional

utility Information. F'igure a 8shows that the conditional utilities for I(Al IHI) = 10 tnitd

U(.4, 1111) a 10, and that the scaling factor between R1 and 712 is J. This haiforllnittioii

states that performing ,At If 72 has occurred is worth twice am much am performiing A if'

W1 has occurred, because /(,Aa,'Hj) a 10 while U(AjTij) a 20.
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3,1.6 Combining probability with utility Combining the probability and utility in-

formation takes place with the posterior probabilities, P(H1 I 6j), and the utility scaling

factors, U(?1I). The posterior probabilities are multiplied with their respective scaling

factors and the utility ratio graph Is manipulated to produce the utility Information coil.

ditioned on the state of evidence, U(A, I 4j). Mathematically, this process Is similar to

the law of total probability:

U(Ak I 4j) * U(.Ak Wj -) P(7Nj CI 4) V(7'4)(

Figure 7, Indopendence ropresentation with ratio graphs,

34 Inidependent evidence

According to the description of probability ratio grapihN, the vertlcmic of a grnplh

represent disjoint events, This extends to the evidence states that are contained lit i

hypotheses vertex as well, Requiring enumeration of disjoint evidence states brings conit.

binatorial explosion with Independent evidences. The number of disjoint. vvidence stnas

grows exponentially (2n) with tile numiber of Independent evidences. T'lhis is clearly an
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undesirable situation and combating this exponential growth requires a "tweak" in the

probability ratio graph concept,

Representing Independence In a probability ratio graph requires separate graphs.

In Morlan's description, he does not allow for the possibility of multiple (disconnected)

embedded graphs, however, this addition to the concept Is a natural outgrowth of Indl.

pendence. Figure 7 Is a depiction of two independent probability ratio graphs transitioning

into their joint representation. The mathematics of probability ratio graphs treat the ver.

tices In a connected graph u disjoint, collectively exhaustive states, The semi-complex

graph in figure 7 also treats each separate graph in this way.

A A, iB

~A AtiotlB
Is B

ntV tABnotA B

notE I, taf

ir 8. M- PRA

Figure 8. Joint occurrence of Independent events.

There are two ways in which to use independent evidence for developing tho posterior

distribution using probability ratio graphs. One method uses the nesting approach shown

In figure 8, the other involves sequential probability updating. The first method is tile

same as combining the indepe:ndent likelihoods then applying Dayes' theorem. Sequential

probability updating involves using the posterior prohabilities to replace the priors alid

continuing the inference process. If the evidence states are Independent theln performiing

sequential updating will produce an equivalent result to using the disjoint evidence state
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and performing the inference step once. Both methods apply only when the evidences are

independent.

B 

B

AA

Figure 9. Nesting independent events.

The independence representation described requires support which is not supplied

by Morlan's initial concept. To represent independence, vertices must be able to have

multiple embedded graphs. This is an easy step to implement, It Is merely a redefinitilon

to Include the possibility for multiple embedded graphs:

Vertext An event anid embedded probability ratio graphs, The event could
be a hypotheses representing a possible state of the world or it pos.
sible evidence state which is used to reason about the hypotheses,
An embedded C represents conditional probabilities, conditioned
on the parent vertex, Multiple O's represent independent event
states.

Supporting the mathematics associated with independence is more involved, A "nest-

Ing" procedure needs to be added to triangulation, aggregation, and disaggregation. And

aggregation needs to be enhanced to account for the propagation, or replication of the

remaining Independent graphs In the aggregated graph. A possible nesting procoduro Is

depicted in figure 9,
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Y•, Current Software

The software developed for this work Is generally an implementation of Morlan's

probability ratio graph concept on a small scale (It does not include the independence

capability). It can support the simple probability functions of representing conditional

and joint probabilities, and can accomplish Bayes' theorem manipulations. The siniple

features can also represent quite complex systems if a nested3 approach Is used. Vertices

on any level can contain embedded graphs. Using this approach, the graph is basically a

tree representation as shown in figure 10. The software limits the total number of vertices

that can be active4 at any one time, but conceptually there is no limit to the possible

number of levels.

.*" . . .. ..

Figure 10. Comparison of a compound vertex to a tree re.presotntation.

The software divides the screen in four separate viewports, each viewport supporting

different aspects of the program, Figure 11 shows a typical screen with the four viewports

(clockwise from the top left corner): viewport 1, the promtpting port for Input; viewport

2, the menu port; viewport 4, results port for typed output; and viawport 3, the graphlks

3"Neeted" in thig context refers to the multiple Iayers of graphs, not multiple graphim lit a ingleo iayer,
'In thim context "active" realns all of the vertices which are specified at all levelm it the my.ntteii.
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port, The program can present a vertex in two ways: 1) as a large pie graph which shows

the relative probabilities of each embedded vertex as the angle subtended in the chart, or

2) as a small pie chart In the corner of the the graphics screen and I embedded graph

shown as a connected graph with each embedded vertex shown as a pie chart of its likewise

embedded giaph. The net representation presents all the available information in a simple

probability problem showing two complete levels and their relative proportions at once.

viewport-1 vlewport-2

viewport-3 viewport-4

1 A3

Figure 11. Net presentation of a compound vertex.

The software has strayed from Mo-lan's description in several areas, The triangu.

lation function has been extended so that any two vertices in a common graph can be

connected regardless of their current connection path5 . If two previously linked nodes are

triangulated it either has no effect or it reverses the arc direction, the outcome of which

depen is on the original arc orientation with respect to the new arc orientation. Thie aggre-

gation function is "hot-wired" in that it figures the probabilities for the aggregated graph

'This axtension equivalently triangulates between the vertices along the connection path,
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and uses their probability measure to reconnect the vertices on the now level. Appendix

A contains a discussion of the program's abilities, limitations, and use.

3•4 ,'ummary

This chapter introduced an interpretation of Morlan's probability ratio graphs with

possible enhancements, It also briefly Introduced the PC-based tool that implements the

probability ratio graph concept on a restricted level.

The addition of the Independence enhancement will Increase probability ratio graph's

versatility and ability to represent complex decision problems. The current program Is still

very devlopmentally oriented. It would , no doubt, benefit from code simplification and

technical modifications,
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IV. Missing Invformation, Independence, and Secondary Uncertainty

During software generation several interesting topics arose that spawned questions

of interpretation.

e When system parameters are unspecified, how should a diagnostic system deal with
the missing information?
A related question is, how does the difference between causal Implication and condi.
tional probability affect likelihood generation?

s Under the common usumption of disjoint hypotheses, what does hypothesls.evidence
independence mean?

* What Is the meaning of spurious evidence, and how does it effoet the diagnostic
system?

The design heuristics of decision support systems depend In part on tite Interpreta.

tions that result from these considerations, If the information described above is estimated

it Is important to understand the Impact of the original parameters so Its affect catl bu

taken into account in the estimation,

4.1 Missing information

Morlan points out that during system development, "it cannot be guaranteed that ail

combinations of evidence will be generated for all hypotheses," (13:11) Under this sltuaition

the problem Is how to continue the decision process when pertinent Information is available

but how It relates to some of the hypotheses under consideration Is unknown. Clearly It

Is de~irable to Include all the available Information as long as It Is not a dotrinint to the

decision process, The Intent of this discussion Is not to prove that a method Is correct., but

merely to present a proposed method and its Intuitive Interpretation,

Morlan presents a method wherein the missing evidence-hypotheses Information is

estimated under the assumption of probabilistic Independence.

P(C I 3) = P(t)

33



This doe not mean there is no causal link between 71 and P; In fact, it implies that there

is a causal link between the two (see the section on Independence for a discussion of this

facet).

Another interpretation Is that the lack of information Implies that 74 and C are

causally Independent, This may be the cue, but such an assumption has a potentlally

drastic effect on the posterior distribution, If the causality between 71 and C Is truly

unknown then an assumption of no link Is a bold move.

Under the assumption of probabilistic Independence, Morlan starts with the law of

total probability to develop an equation for determining the missling InfOrmation, FFor it

case Involving three hypotheses, with no Information for P(C I hij), estimuite:

P(C I Wt) a P(C) - PVt 1%2)'- P(NO) + P(V 1 %0) -P(RO)

1 - P(NI)

By using this assumption the posterior probability P(711 I C) equals the prior prob.

ability P(N4) and the posterior probabilities for the other hypotheses change (unless they

too are probablllstlcally independent). In effect, the observance of 9 alters those hypotho.

see whicic have information relating to C and does not affect the others, Figure 12 shows

a graphic Interpretation of such a process,

Such an operation can be seon as partitioning the Ihypotheses into two sets: onie sut,

Rj.d, containing the hypotheses which are probabillstically independent of C, and one sot,

'hdsp, contalning the hypotheses which are probabillsticaily dependent on C, Figure 13

shows such a partitioning, Th.m probability conditioning takes place on the dependent sot,

Nd. uas If it were the entire hypotheses space. Then the two sets are recombinedc to i)roviilu

the final posterior distribution, P(Wj 1 6),

The process can be performed In this manner without actually genorating any muisaitig

information and the results are equivalent,

34



Prior (WI) Poe6.raur (9 I %0

Figure 12. Graphic depiction of estimating missing Information a probabillticaldy Inde.
pendent.

SExample 4,1 ...... . .. Milling Infor~ion ID

Given the following hIformttlon,

Prior@ Likelihoods
P(71) - .3 P(C NJ) " (misuing)
P(%3) m .4 P(C V3) w .6
P0(4) - ,2 P(CI173) - ,9
P(%€4 ) u .1 P(C17 4) = .2

P(t) 9 P(III,,P'H) ,,

-.629

Assuming $ and 71 are probabillatically independent, P(t I WlI) - .029. Apply.
ing Bayeu' theorem to the data yields the following posterior MrobiJbLi)ituil,

P(0 1 C) m .3
P(N2 e2) = .3829

P(H C t) = .286
P(N4 C) ) .032
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*
4
idep • I

141ig aI4

Iintild Priors ?if Partitioned! P'dar

Figure 13. Graphic depiction of applylng t by partitioning hypothesem with roepect to
probabillitic dependence,

Using the partitioningl method, Daye' theorem Is applied only to thie ihypotiroue
that are connected to t,

Priors Likollhooda
P(Nv) = .4 /'(C•1'%) 1 ,0
P(l3) , .2 P(e 17a) - .9
"P(h4) , MC 1,(14) a .2

This delivers the Intermediate posterlorN,

P(nI C) a .845
P(n• I e)'- .40o
P(H4 I e)' a .045

Roecomblnatlon of the Indepondent hypothoese, 'h,,4 with tho dnpoiidont hypotlhe.
mego al4p, Involve. acallaig the Intormodlato posterlors with rospoct to thelr prior
probabilitflo,
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tw U.1114 11.
•dop * ,P d€P U.

1Ifitild
Partitioned Prla P l PiRi Pou96uloi, Recombined Poaterlors

1Figure 14. Graphic depiction of applying C by partitioning hypothobes with roepect to
probabilistic dependence (conttinued).

Ch 1) mP(ho I e), -*odo

Giving the oamne posterior distribution u the firmt method,
I( IC) - ,,'

P(R3 C) w (.454), (.7) = ,382
P(N3 C) = (.409), (.7) m .280
,"(N4 tI) - (,43), (.7) - .032

This example shows the Intuitive appeal of umumning prubabillutle Indopoendeuco Wih011

likelihood Information Is missing and there are no grounds for making a subjectlve assuss.

ment, It seems beneficial to Include Information wihen its availability can iorvw to difrt'reni-

tLute between some of the competing hypotheses, At the maine time, It would svtn foIlly tou
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exclude hypotheses just because the connections are unknown or ntot understood', Usling

the usumption of probabilistic independence, as presented by Moelan, seems to balance

the need to include the available information without treating the apparently underdefiled

hypotheses unfairly.

4-8 likelihooda

The relationship between hypotheses and evidence is confused by the perceived equal.

ity of causality with conditional probability, Only under highly constrained conditionus Is

P(C I7n), the conditional probability, synonymous with P(C i. N/), the causal probability',

("11" indicates causal probability, not conditionalprobability). This difference causes prob.

lois in system development because in many situations It is euler to think of and estimate

the probability that n caused e, P(C i. 14), than It Is to estimate the likelihood, P(C i71)3,
However, it is the likelihoods that are used in Dayesian inference, not the causal Impil.

cations, Generating missing likelihood Information brings out the Important diffewrnco

between conditional probability and causal implication,

The conditional probability, P(C I N/), is Information that Is usually supplied tharough

statistical analysis or expert opinion, However, in the event that either the existing data

buse Is Insufficient for valid statistical results, or the expert can, at best, supply causal

implications, then likelihoods must be estimated, The likelihood P(e IN7) Is equal to the'

probability that 71 caused t plus the probability that t happened Independently of R

given that 7 (lid not cause C,

Example 4. Likelihoods and causal informatn

Given the situation described In figure 15, how do the conditional probabilities,
P(C I 71j), relate to the causal probability, P(t 1o 7Il)? 'rht e conditional probabilities
of interest are readily evident from the Vonn diagram in figure 18:

lExcluding hypotheses because ul insufficient Inforn•atlon IN buicaily denying Omitr existaiico duo tw

Ignorance of the process.
'The P(t 1. R) IN the probability that It caused t, where NJ." Indicatea cnuauol probability, trot cotidi.

Uonol probability.
MThe likelihood P(t I Wf) is the probability that C Ihu uo Viii occur sivelY that Wt 5m occurrld, It Im

simply a conditional probability,
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ID

FIgure 15, Venn diagram for example 4.2,

However, the causal probabilities, estli•ated by an expert, are something other than
the conditionals:

Me IV (I,71) 5 ~

The problem arises from the fact that P(t I 111) and P(C I. Xj) are known,
while the conditional probabilities (the regions in the Vent (liagram) are unknown,
Without some further Information on regions A and C there In no way of toenratling
the conditional probabilities,

A possible simplIfying assumption Is that regions B and D are equal to the emlpty
set. This is the buic assumption of disjoint hypotheses. An long us e can only be
caused by the hypotheses under consideration (this Implies that G Is ulso equal to
the empty sot), then the conditional probabilities and the causal I)robabilitlos are
equal:

Me I i) - P(=I.1 I) N
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0,

This simplifying assumption hu some appeal, However, adding spurious evidence
to the model Is actually saying that there Is a hypothesis, that is Independent of the
met of hypotheses of Interest, which could cause E, In this case the problem becomes
difficult to visualize with a simple Venn diagram.

In moat situations there is some probability that an evidence can occur without being

caused by one of the hypotheses under consideration, Thin probability of independent oc.

currence Increuas the conditional probabilities and does not affect the causal probabilities,

The problem of dealing with causal estimates when using a frequency Inference mechanism

Is important and not trivial,

4. Independence

In a BiLaysin diagnostic system when an evidence and hypothosis are probabllisticaily

Independent it In generally true that they are causally dependent. The only way e, anid

a member of the disjoint hypotheses set, Noa, can be both probabilisticaily and causally

independent is if every member of 74, is causally independent of 8, In such a situation C

Is of no value u evidence mince it does not differentiate between the possible hypotheses,

Another way that a member of 74, and C can be probabilistlcally Independent is if

the P(C 1) happens to equal the P(t) as given from the law of total probability:

in

Where N1 are members of N1,,

In suCh a situation, probabilistic independence is an interesting property but is of

little actual sigflcance, The Interesting property is that If 7N aind e are probabilistlically

Independent then observing e does not alter the probability that 7R has occurred, It is

of no real significance because, as Morlan points out, "the Important Information II Ii

oltuation Includes tite relative probabilities of tie possible states of the world and tile

relative losses, Decisions between two actions can be made based on a computation of tle
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relative expected losses." (13:3) So. in a decision situation the relative probabilities of tile

hypotheses are Important not their actual probabilities.

4.4 Secondary Uncertainty

The term spuwous came up quite often, mostly in conjunction with argument, about

independence, Spurious is a vague term which can encompass a broad range of phenomena.

According to the dictionary spurious means false; however, in msome situntiuns it Is applied

where it refers to various Ideas: unknown origin, unimportant origin, and false indication,

The first two Ideas, unknown and unimportant origin, apply when the event actually

occurred but why it occurred Is either unknown or unimportant. The last Idea, false

Indication, applies when the indicated event hasn't actually occurred, Usle indication

can happen in two way.s first, an indication of an event that hasn't actually occurred,

and second, lack of an Indication when an event hu occurred, This false Indication Is

a reporting problem, and Its probability uasesment is the uncertainty In tile evidence or

secondary uncertainty,

False indication can be ciharacterlsed as the observance of some event when the event

hasn't occurred, The probability of such an observance Is stated as the P(e. I note) and

P(note.. I C), or P(C I notte) and P(notC I t.), where C. is the observed state and 6

Is the actual state. The confidence (uncertainty) In the obsa ved data is the probability

that the observed state Is the same as the actual state: P(4 I C) and P(note. I nolt),

or P(C I 4) and P(nott I note.), What we see and can gather Is the observod state, 4

and our decisions are based upon observed information. Whether the assessment of the

uncertainty Is described as P(t I C.) or P(to I C), the goal Is an assessment of tlhe posterior

probability P(Hj I C.), where 7N are the hypotheses under consideration.

There are at lout two possible methods for Incorporating secondary uncertainty iII

a probabilistic inference problem: 1) Jeffrey's rule, which uses tihe ussellmnot of P(e I 4,),
and Incorporates title information at the posterior level; and 2) an alter•ate method, wiMlI

involves the usessmants of P(C4 I C) and P(notto I not.), and incorporates this informil-.

tion at the likelihood level. Both methods perform the same type of mathematical tral..
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formation; however, there are potentially great differences in the computational complexity

of a given problem.

4.4.1 Jeffrey'. rule Jeffrey's rule is a method for generating the probabilities P(Ni

to) when the uncertainty uasessment yields P(8 I e), It i1 an application of the law of

total probability conditioned with the confidence in the report, P(C I 4).

P(71 14) - £P(N I e,)P(e, I o) (2)
iml

Equation 2 Is a weighted average of the possible probability states P(H I e) and P(71 I
note), weighted on the uncertainty In the evidence state e. Graphically, Jeffrey's rule is

simply a linear Interpolation between the possible pure evidence states weighted with the

uncertainty in the evidence states,

Eamle 4.3 ,, Je.frey's Rule with 1 Evidencel

Given the following probabilities,

P(7 I C) = .2
P(7 nott) = .8

With the confidence in e at 80%,

.P(t I to) = .8

then the posterior probability of 71 given the observed evidence 4. becomes,

P(71I o) * P(71 I )P(C I 4.) + P(71 I notC)P(noir, 4o)
- (,2)(.8) + (.8)(,2)

..32

This example Is graphically depicted In figure 16,
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...... !..... f...... .... ..... !..... ? ....P .... 1 ..... ..... " ,

P(," . .nott) . ..... ....... .. * .... ..... -" P(' e)"4 .. .. .. ..... I..... 1....." ...P ... ... ... " '
" ii It,)

Figure 16. Graphic depiction of Jeffrey's rule.

If there are several evidence states, the result is the intersection of the interpolations

conditioned on the evidences in question.

Txample 4.4 3e0rey's Rule with 2 Evidence j

In this example there are two evidences, each with some degree of uncertainty, Given
the evidence 61 is the evidence from example 4.3, and the following probabilities,

P(•H el, 2) = .9
P(h IEl,not42 ) = .2
P(N Ioti, 2 ) = .4
P(71 notel,note 2 ) = .8

With the confidence In (1 at 80%, and In g2 at 30%,

P~ee 4e) = .8
P(e2 4 4) = ,3

With above information the assessment of the posterior probability of 'H given
the observed state of the evidence, e., becomes,
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P((74 1 fltttino$I)

P(W~~ ~ ~ ~ noentaP7 lIs

let, 2  oe2

Figure 17. Graphic depiction of Jeffrey's rule with uncertainty lit two Ovidencen.

P(%~ I C4) =P(?N 161, e)P(e1 I C)P(e.3 I 4o)
+ P(71 el t1,Wf 2)P(e1 I C.)P(Tlat6 4")
+ P(7ih I nte1 .e2) P(noW1l I to)P(2 e.4)
+ PM7 I notte1 , WOt)P'110tt I C)P010tel I eo)

=(.9)(.8)(.3) + (.2)(.8)(.7) + (.4)(.2)(.3) + (.8)(.2)(.7)
-. 464

This example Is graphically depicted In figure 17. The value of at each corneor
of the graph Is the "pure" posterior, conditioned on a comubinatiton of perfect
Information about the evidences.

4.42 Spuriouiv Evidence Another method for Incorporating unev(rtalit~ty In~ tilt, ev.

idence Is to use the assessmnent of the P(C. I C) to generate new likelihiood IplobaIbilltlem

P(t4 171"). Like Jeffrey's rule, It Is an application of the law of' total probability. It Involveh
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conditioning on the confidence in the reporting system, P(6. I e).

P(Co) = P(C, I C)P(6) + P(4e I notC)P(notC) (3)

The effect of Incorporating the uncertainty in the evidence In the likelihoods Is to reduce

the range of values that the likelihood P(o 1 7") can take.

' t ..... .....• ...... .. ......
t 1I I l ll l l lI tI I l l l ll l i

S | | . .... . .L . .. ......... P V C I <,
.9t ....."' ''p "I'*' "' +• ..... .0-•+o,..,.,, • ..... I................. • .....p.......... ... '

P(t. I note) .4 Me' .s. * (. I e" " .................. " .3

,, .. ..F .. . . .. +.. ..• ..... .......... . . .. ,

A 0

0 1 3 f.4 .6 0 ..6 .7
(5 II

P(C)

Figure 18. The effect of spurious evidence on likelihoods.

xampe4.5ymeteric Spurou Evidence

Given that the probabilities for observing C are,

eP(6e0  ) = .9

P(6o note) = .3

and If the likelihoods are,

P(e Iii) = .8
P(e nothl) = .4

then by applying equation 3 the likelihoods for the observed evidence become,

P(Co %j) = .78
P( o I notlif) = .54
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4*

In this example, the range of the observed likelihoods, P(e. I 71i), is between
.9 and .3. Figure 18 depicts the range of values that P(C. I W) can take. The
P(e I 7%) will lie somewhere along the line depicted in figure 18.

Equation 3, when expressed in terms of the probability of seeing the correct state of

the evidence, changes to,

P(C) = P(e) (P(e 1Co ) + P(note I note) - 1] + 1 - P(not. I note) (4)

If the spurious nature of the senior is independent of the sensor's actual state then

P(C. I C) = P(notto I note), and is *lrmmetric. When the probablitty of error is sym.

metric, equation 4 reduces to,

P(C) - P(C)[2P(o I C) - 1] + 1_( ) (-)

.9 ... ..... ....I. .... i.. I .....

,et ....... ........... ............... . ...

P(C0 I .oe .•.). i e)

.................................

P~to nPth)o :, :~ ~~... : .. ... .',,.

P(C not-i) ,(dt I hi)

Figure 19. The effect of symmetric spurious evidence on likelihoods,
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Example 4.6 Symmetric Spurlou lEvoene]

Given''the probabilities from example 4.5 except that the spurious probabilities are

symmetric, and equal to,

P(eo I ) = P(notCo I note) = .8

then the likelihoods for the observed evidence become,

P(Co N O,) = .68
P(o I not7j) a .44

This example Is graphically depicted In figure 19.

The worst situation would be to have the P(C, 1 6) a P(notl, I note) m 0.5. ThiM,

in effect, is a random sensor with a uniform distribution over the possible states. In sucl-,

a cue the P(o I 7N) - 0,5, regardless of the P(e I 7U); this case Is depicted In figure 20.

[ I i i i H , I

.6 *II1 *,,, III *.41 11 .1*. jt I.II lll I 11,

P(4. I nott) A -V-I-t

P(C nollq IIII

....................... ... .....
n. . 3....... .9 *i . NA)

.5 .P I MO

P(C)

Figure 20. The effect of symmetric spurious evidence when P(f.,I C) = .5,
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4.4.3 Comparisono lioth methods estimate the P(71 I C). However, they go about

it In different ways. With Jeffrey's rule the conditioning takes place after applying Bayes'

theorem using the P(C i 4) and P(nott I C.), and the posterior probabilities P(71 I C)

and P(11 I notC)l

P(W I to) - . P(74 I (,)P(e, I4) + P(W I note,)P(not, I eo)
Iml

In the other method the conditioning takes place before applying Bayes' theorem

using the P(C, I C) and P(C. I note), and the likelihoods P(e I %I) and P(notC 171j):

P(C. I %) - P(C. I C)P(e 171) + P(C. I nott)P(noit 171)

Since both methods are concerned with estimating the mame posterior probability P(7Wl

(by conjecture) they should arrive at the same conclusion given compatible Initial conditions'

However, because the methods Include the evidence uncertainty Information at diflfrent

levels In the Bayeslan Inference process the number of assessments and calculations required

Is different.

Examples 4.3 and 4.4 show the effect of applying Jeffrey's rule. The posterior proba.

bilities for every combination of the set of evidence., C,, are needed to make an usessment

of the P(W I e.), The problem grows exponentially with the number of evidences under

consideration, and linearly with the number of hypotheses, Example 4,7 Is a comparlsoin

of the assessments and calculations required by Jeffrey's rule and the alternate nmethod,

'Determining compatible initial conditions is a formidable task In itself, Such a deterini,•tion involves
the use of the marginal distribution on either C. or C.
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Example 4.7 Method Comparisons.

Starting with an Inference problem that has the prior probabilities P(W'•) and the
likelihoods P(j I 7hj) already specified, how does Jeffrey's rule compare to the
alternate method in assessing the posterior probabilities P(7•j I C)?

Initial conditions: him 1n to a
jjm j - 1 to a

fi3 y alterna'te Conditional probability assessments
rule method

n "assements of P(j I 4)
n usessments of P(t. Lr4) if uncertainty Is symmetric,

or
2 -n assessments If not symmetric, n ausemsments of P(o nottj),

and n au~essments of P(V I e4)
Posterior probability calculations

a,-" 2 calculations of the posterior probablilties P(R I not.j*),1and P(71i I V)
a calculations of the posterlor. P(R4 I 6')

Conditional probability transformations
a calculations of the posterior transformation

P(W, I t) . E Pot(, I e.)P(e. I e.)+P(Wt I not4)P(no~tj I E.)
Jul

a , n calculations of the likelihood transformation

P(el 1 '80) = P(-e.) l I")P(e' fl) + P(-( I 1o+0(e)P(nuote4 i'+)

Table 1, Comparison of Jeffrey's rule with tihe alternate method,

Table 1 shows that using Jeffrey's rule for Incorporating secondary uncertainty grows

exponentially In the number of posterior probabilities required, If secondary uncertainty

can be Incorporated In the likelihood Information, then the inference problem grows linearly

with the evidences In calculating the likelihoods, and decreases the number of posterior

probabilities to one for each hypothesis under consideration.
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S.

4.M Summary

This chapter covered 1) a possible method for dealing with missing Information to

continue with the inference process, 2) the difference between causal Implication and con.

ditional probabilities and how it affects likelihood generation, 3) the meaning of causal

independence and probabilistic Independence in the context of a B•yesian inference modal,

and 4) the effect of Including secondary uncertainty In a Bayesian inference model.

The foregoing discussion only begins to show the ramifications of each area, With

missing information, the assumption of probabilistic Independence has intuitive appeal

and Is easily implemented, The difference between causal Implication and conditional

probability can have significant effects In the generation of the initial probabilities used III

probabilistic inference systems, The difference In the meanings of causal and probabili.

tic Independence with respect to Bayesian Inference system. Is an important distinction.

Causal independence has an Intuitive meaning where the Independent parties have no CoII.

nection. Probabilistic independence Is an Interesting phenomena but is of little use when

Interested In causality. Lastly, where secondary uncertainty is Included ha. a great effect

on the computational complexity of probabilistic systems,
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V. Conclusions and Recommendations

n't it #ad how some people 18 grip on their lives is ao precarious that they'll
embrace any preposterous delusion rather than face an occasional bleak truth?

Calvin and Hobbes (comic strip) -Bill Waterson

This theis was concerned with the -epresentation and interpretation of uncertainty.

Chapter Ii presented a view of the present state of uncertainty reasoning from an opor.

ational and a philosophical perspective. Chapter III examined probability ratio graph. as

a representation of the probability model, Chapter IV discussed several topics of concern

in uncertainty reasoning: 1) missing Information and likelihood generation, 2) the mean.

Ing of independence from a Bayesian context, and 3) Including secondary uncertainty and

spurious Indications, This research was motivated by the current interest in Incorporating

uncertainty reasoning into expert systems. The following are the conclusions resulting

fiom this research.

5. 1 Conclusions

Non-unlquenee. of Uncertainty Representation, The representation of uncertali

knowledge can take many forms, none of which can be said to be an exclusivety "cor.

rect" method. While operationally any method is applicable If used within its valid range,

for theoretical acceptance they must be consistent and logically coherent, Probability the.

ory exhibits both characteristics and has a sound theoretical foundation while the other

methods do not, This does not preclude research into the other methods; however, It does

show that they have limited applicability as they now stand,

Probability Ratio Graphs as a Representation of Probability. Probability ratio graphs

are an appealing method for representing the probability model. It is easily rendered In

a graphical format where conditional and marginal probabilities are readily evident and

are intuitively meaningful. As Morlan describes them, probability ratio graphs cannot

represent probabilistic independence. The proposed method for adding an independence
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capability enhances probability ratio graph's ability to represent the probability model,

and therefore Increuases their versatility for representing complex decision problems,

Missing Information and Likelihood Generation. The method of assuming proba.

bilistic independence for generating missing likelihood Information offers several benefits:

1) It has an Intuitive appeal since it seems beneficial to include all the available relevant

information in a given decision problem, 2) it appears detrimental to the decision problem

to exclude hypotheses through ignorance, 3) Morlan's assumption of probabilistic indepon.

dance seems to balance the need for Including available Information while not excluding

hypotheses through Ignorance, and 4) it obviates the need to generate any information

since applying Bayes' theorem to the partitioned dependent hypotheNes and recombining

produces equivalent results.

The distinction between causality and conditional probability has ominous Implica.

tions when experts make subjective estimates of conditional probabilities, Probability is a

ripresentation of relative frequencies, not causality. This it important because In many sit.

uations It is easier to think about and estimate causality than it is to estimate conditional

probability, However, since Bayesian Inference Is probabilistic, It treats the information as

relative frequencies, not causality, If experts' subjective causal assessments are to be used

they must be transformed from a causal representation into a frequency representation,

Causal Versus Probabilistic Independence, In a Bayesian inference context, prolb.

bilistlc independence is a coincidence of little significance to the decision problem. Causal

independence, on the other hand, Is of great significance since it Is a strong inuplication

when either an evidence state is present or absent,

Including Secondary Uncertainty, Secondary uncertainty is a product of the reporting

system. It Is termed secondary uncertainty because it is a characteristic of the evidence

which is used to reason about the state of the world, It is thus secondary because It Is

not part of the primary uncertainty problem, Chapter IV presents Jeffrey's rule and an

alternate method for including secondary uncertainty in the reasoning process, Jeffrey'n
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rule Includes the secondary uncertainty at the posterior level, whereas the alternative Is to

include the secondary uncertainty at the likelihood level, In a relatively simple example, It

was shown that the alternate method, as compared to Jeffrey's rule, produced significant

reductions in the computational complexity of Including secondary uncortainty',

8.8 Aeos for FAture Research

Probability Ratio Graph Implementation. The probability ratio graph concept is

maturing. With the conceptual addition of Independence It has become capable of rep.

resenting the full probability model, The developed program is capable of handling thie

restricted probability ratio graph model- however, It is still a fledgling research tool which Is

not computatlonally efficient. A next step would be to streamline and simplify the present

coding, and implement the full probability ratio graph concept including the Independence

capability and the utility section.

Analysis of the Missing Informatlon Assumption and Likelihood Generation, Al).

plying the usumption of probabilistic independence to missing information Is intuitively

appealing and eully implemented from a calculation statidpoint', However, ease of lniple.

mentation and being Intuitively pleasing are not vigorous tests for validity, Other methods

should be developed and then compared with this assumption to establish a bais for

validity.

The generation of likelihood information to related to th, missaing information prob.

lem. As presented in this thesis, generating likelihood information from causal Information

necessitates an analysis of the underlying decision problem: specifically, assesshig the pos.

sibility of the independent occurrence of evidence. Further research Involving the likelihood

generation scheme presented in chapter IV would provide a greater understanding of the

'By conjecture. given compatible initial conditions both methods should produce equivalent results
since they are estimating the same posterior probability, However, determining thoase compatible Initial
conditions is itselfa difficult undertaking.

SUnder the usumption of probabilistic independence no missing infornistion needs to be geiterated to
continue the inference process
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subjective ussesment processes and may explain the irrationality of some expert asses.s

monte when they occur.

Including Secondary lncertainty, Including secondary uncertainty involves trans.

forming a conditional probability Involving the evidence, C, Into a conditional probability

involving the observed evidence, C., A. shown in Chapter IV, where In the inference cy.

cle this transformation occurs hu a great influence in the computational complexity of

the overall problem. Chapter IV only introduces the concept of including secondary un.

certainty in the likelihood Information- the preliminary Indications are that this method

greatly reduces the calculations required u compared with Jeffrey's rule, It was conjec.

tured that Jeffrey's rule and the alternate method should produce equivalent estimates,

This conjecture must now be substantiated or disproved whichever the case may be,

6,S Summary

Uncertainty reasoning has proven to be fertile ground for creative minds, There Is

always room for further interpretation of uncertainty and how to objectively deal with

it, This thesis dealt with several topics involving the representation and Interpretation of

various facets of uncertainty. Further reoearch into the topics Introduced in this thesis may

prove fruitful for using a probabilistic model of uncertainty, However, probability Is only

one method for representing uncertainty; other methods may prove superior if they can

solve the problems of consistency and logical coherence,
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Appendix A. Probability Ratio Graph Software

This appendix contains a discussion of the probability ratio graph software created as

part of this thesis effort. Turbo Pascal Is the supporting language due to its 1) availability,

2) graphics capability, and 3) programming support. Another Important point is that my

advisor was familiar with Turbo Pascal, so help was available. The purpose of this software

Is to provide a beginning for encoding probability ratio graphs, The first section will cover

the system structure, and the second section will cover program use,

A. I Structure

Most of the program is support for Information management functions and user

interfacing, The software Is separated into five units, each containing related functions,

and one driver program.

Unit P5urpose

LTt Contains procedures for list manipulations.
Parts Contains procedures for screen formatting, Interfac-

Ing, and control.
Parts Contains program specific procedures for generating,

loading, saving, and managing node and arc Informa.
tion,

flhow Contains program specific procedures for graphics
display and probability ratio graph manipulations.

Menu iisn pro-Ii'i.s for program control and user"T.
terfacing,

Note: The driver program Is "test~pa." Its only purpose is to lii.
tiate the program and hand over control to the menu unit,

Table 2, Program units and their purpose,

The program uses record variables to represent the two data structures Involved in

probability ratio graphs, arcs and nodes (the term "node" is synonymous with "vertex" for

purposes of discussion.), The operations are carried out by procedures (which, incidetitally,

do not necessarily go by the same names as described In Chapter 11i; the differences will

be discussed when the need arises,). This discussion covers the general program concept
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and function. The individual procedures are listed In appendix B with specific information

relating to there use and purpose,

A.1.1 Lot Unit The Lot unit contains procedures for manipulating list structures,

Turbo Pascal does not readily support list structures ; however, there are some data struc.

tures In this program which are best represented with lists. The procedures in this unit

provide a means for using Turbo Pucali's string variables as lists.

There are two types of list structures: 1) lists where the members are separated by

commu, and 2) lists where the members are separated by blank spaces, The two types

came about because the first lists were separated by commas and the majority of the

program was written toward that end; the second list type was a late-comer, It grew from

a need for displs•ying text in the different screen viewports (word wrapping In different

port widths, and different screen modes-EGA, VGA).

This unit is independent of the specific program purpose; that is, it can be used in

other applications where data structures are represented as lists,

A.1.8 Porto Unit The Ports unit contains procedures for screen formatting and

interfacing, An important part of the program's function is the presentation of the In.

formation contained In probability ratio graphs, and to provide for easy user interfacing.

Like the Lit unit, this unit Is not program specific. The procedures can be used with other

applications.

Some procedures in this unit provide the capability for separating the screen into four

aress (viewports), each providing a means for presenting different types of Information2 ,

There are procedures that change the active viewport and perform the administrativo

overhead (maintaining last cursor position, changing color settings to the current viewport

colors, etc..,),

I LISP is an example of a lanuage that relies on lists for the data structures,
"There are no procedures that specifically control the type of information displayed In the different

viewports, Any information can be displayed in any port; where the information In displayed Is up to tile
programmer.
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Several procedures control the input and output of typed information. These specific

procedures ue necessary because Turbo Pascal does not have the capability for displaying

text and graphics windows simultaneously. For presentation continuity the screen is in

the graphics mode at all times. To provide for typed interaction, special procedures were

needed.

A.1.3 Parts Unit The Parts unit contains the procedures that control the creation,

deletion, Identification, retrieving, and maving of the specific data types used by the pro.

gram. It Is program specific (meaning that the procedures relate to this specific application

only), This unit specifies the record data types for the nodes and arcs, and declares global

variables used for system data control,

A.1.4 Show Unit The Show unit contains the procedures that create the graphic

representations and the procedures that Implement the manipulation functions of probe.

bility ratio graphs. The majority of this unit Is devoted to the graphics support function.

The manipulation functions are encoded in three main procedures: 1) trimagulate (trian.

gulation), 2) explode (aggregation), and 3) cluster (disaggregation), This unit is program

specific.

Graphics support. The graphics support provides for two ways of viewing the
system: 1) The nodes can be viewed individually as a pie chart where the pie
sections represent embedded nodes. 2) The nodes can be viewed as a connected
graph of miniaturized pie charts. The span of the arcs in each pie chart reflects
the relative probability of the nodes conditioned on the parent node, The
connected graph representation shows the parent node as a miniaturized pie
chart in the lower right corner of the graphics viewport, and the connected
graph shows the arc connections between the embedded nodes, The connected
graph representation has the advantage of presenting more Information at one
time, while the pie chart has more resolution.

Triangulation. The triangulation procedure is an extended form of the trian-
gulation function described in Chapter III, It can triangulate between any two
nodes In a connected graph regardless of the current connection path. It does
this, in essence, by automatically performing repeated triangulations along the
connection path until the two goal nodes are connected. If the two specified
nodes are currently connected, then the triangulation function either reverses
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the arc direction or does nothing. It reverse@ the arc direction if the original
arc direction Is opposite the specified direction. If the original and specified
orientations are the same, then triangulation has no effect,

Aggregation. The expiode procedure accomplishes the aggregation function,
This procedure is "hot-wired" because instead of using the arc ratios directly to
create the joint representation, it uses the arc ratios to calculate the conditional
probabilities, and these probabilities to reconnect the arcs, forming the joint
representat, ,

Disagpgration. The cluster procedure accomplishes the disaggregation func.
tion. This procedure uses the arc ratios for forming the conditional represent&.
tion, However, it can only collect two nodes at a time and in doing so it creates
a new parent node, That is, there Is no direct way to add an existing node to
an embedded graph, To include a node In an embedded graph one must, 1)
cluster the object node, N., with the parent node containing the target embed.
ded graph, N1p (this creates a new parent node, Npl, containing N. and N,1
as a two element embedded graph.)- then 2) explode Npi which connects N. to
the original target embedded graph.

A, 1.5 Menu Unit The Menu unit contains the procedures for program control and

user interfacing, This unit is program specific in that the menu procedures are geared

toward the procedures in this program. However, the overall menu format works with the

screen structure defined by the Ports unit, and can be used for any application. Ir usod

for a different application, or even an extended version of the current program, the specific

menu procedures would have to be rewritten or upgraded to reflect the change,

A.1.6 Nodes and Arcs In this program the nodes are the major objects (or data

structures), and therefore have many attributes, Some of the attributes are used solely for

graphics support. Table 3 lists thl attributes associated with node.,
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Varlale Typ Purpose

Index String The array element pointer which delineates where the
data relating to the node resides in heap memory.

Name String The label supplied by the user.

Children str n1 A list of the node's embedded nodes.
Parent String The node in which this node is embedded.
ConArc. trIng A list of the arcs which are connected to the node.
Prob Real The node's conditional probability, conditioned on the

parent node.

Color Integer The color of the node (used for graphics).

Xpos Integer The "1X" position of the center of the node (used for
graphics).

Ypos Integer The "yg position of the center of the node (used for
graphics).

*d Integer The radius of the node (used for graphics).

Table 3. Node record attributes.

Like the nodes, arcs also have various attributes. However, unlike the nodes, arcs do

not need any parameters specifically for graphics support. Because they connect nodes,

they use the nodes' parameters for the graphics information. Table 4 lists the attributes

associated with arcs,

Variable Type Purpose .

Index String The array element pointer which delineates where the
data relating to the arc resides in heap memory.

Head String The node at which the arc originates.

Tail String The node at which the arc terminates.

Rato Real The ratio of the nodes' probabilities, Ratio =

Table 4. Arc record attributes.

A. .7 Global Variables This program uses many global variables for defining the

state of the system. They provide a means for access to system status, and for Information

transfer across procedures. The important system global variables are listed in Tabie 5

(these global variables deflie the state of the system).
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Variable Type Purpose

N Array This is the array for the node record pointers. The "In-
dex" parameter for the nodes is derived from this pointer.

A ""Array hTis I the array for the arc record pointers. The "Index"
parameter for the arcs is derived from this pointer.

Ni Integer An Index which Is Incremented when a new node is cre-
ated. The term "new node" as used in this context refers
to a new node record. Once a record Is created it Is never
destroyed. When a node is deleted its index is added to
the inactive node list so when a new system node is cre.
ated the heap memory space can be recycled. "Ni" equals
the number of nodes in the active and inactive node lists.

Al Integer Performs the same function for the arcs as "Ni" does for
the nodes,

"-Acve-N String A list of the active nodes' indices. An active node Is any
node that represented in the system.

InActiveN String lit of the nodes that have been deleted, Once deleted
the node's record space becomes available for reuse,
Therefore, the indices of and the memory for the deleted
nodes are recycled,

ActiveA String Performs the same function for the arcs as "ActiveN"
I I_ does for the nodes.

InActlveA String Perfbrms the same function for the arcs as "InActiveN"
- I_ done for the nodes.

Table 5. System defining global variables.

There are many more global variables which are used as temporary information

storage for information transfer across procedure boundaries. The specific purpose of

these additional variables is described in appendix B.

A.1.8 Data files The data flies contain just enough information to reconstruct the

system state when It was saved3 . The information needed to reconstruct the system state

involves 1) system global variables, 2) node parameters, and 3) arc parameters,

1, System global variables

a ActiveN

SA data file could be created without saving a previously created system, however, this may cause synttax

problems that would cause the program to crash while loading the data file.
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* ActiveA

s InActiveN
e Ni

2. Node parameters

* Index4

* Name
s Parent

3. Arc parameters

e Head
* Tail
* Ratio

The structure of the data files follows this orders,

1. ActiveN
2. Node parameters (Name, Parent)

3. ActlveA

4. Arc parameters (Head, Tall, Ratio)

5. InActiveNe
6. NI

A.* Program Use

To run this program you will need Turbo Pascal, version 4,0 or later, and at least

the following files7 : 1) Test.pas, 2) Lst.pas, 3) Ports.paa, 4) Parts.pan, 5) Show.pas, and

6) Menu.pas. There are also data files associated with this program that are ready to be

loaded for an example of how the system works6 : 1) SCOTT, and 2) ERIC.

To initiate the program, ensure that all of the necessary files above are present in the

same directory, load "test.pas", and press <ctrl>F9 This will compile the main program

and all of the necessary units'.

'The Index io contained In the "ActiveN" list.
'To see the order of a data file, simply view one-they are ASCII files.
OIf the inactive node list is empty then this parameter is set equal to "NONE."
?The ",pu" files are the original code. The ".tpu" files for 2.5 are actually needed to run the program,

These files will be created when the main program, "temt.pas", is compiled,
'These data files are not necessary to run the program,
'If the ".tpu" files for the necessary units do not already exist, <ctrl>F9 will create them.
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viewport-3 viewport-4

I A3

Figure 21, Screen format.

The screen will be split up Into four separate areas as shown in figure 21, Viewport 2

Is the menu viewport; all the main program options are displayed within viewport 2 using

several different menus. The program currently has six available menus:

1. Mainmenu - the top level menu procedure from which the other menus originate,

2. Setupmenu - submenu of mainmenu, offers options for basic system configuration.

3. Graphmenu - submenu of mainmenu, offers options for viewing the system and per.
forming probability ratio graph manipulations.

4. Creiiemenu - submenu of mainmenu, offers options for creating the system objects
(nodes and arcs).

a. Altermenu - submenu of setupmenu, offers options for altering object parameters.

6. Alterarcmenu - submenu of altermenu, offers options for altering arc parameters.

Because the program is In the development mode, the menus are somewhat chaotic

and over.redundant, As the program develops the menus should mature into a well defliued

structure which separates the options in a meaningful way.
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A.S.l Menu. Each menu can display up to six of the available optionsl'. The

listed options can be selected by either pressing the asociated number or first letter of

the option. There are three options that can be selected whether they are listed or not:

1) "Back", returns to the menu one level up; 2) "Main Menu", returns to the main menu;

and 3) "Quit", terminates the program. If they are not listed, these three options can be

selected by pressing the first letter (B, M, or Q). If they are listed, they can be selected by

either the number or the first letter.

A4i.1 Main Menu The main menu is the top level control procedure. The

available options and their purposes are defined in table 6.

Option Purpose

1) Setup Initiates the setup menu.
2) Create Initiates the create menu,
3) Graph Initiates the graph menu,
"4) Initialize* This option Initializes the system parameters. All of

the active nodes and arcs are added to their respective
Inactive lists and the active lists are set to nil,

5) Bit Image This is a non-functioning option. It was to use Turbo
Pascal's ability to save a bit Image so thte graphics
could be printed. However, this may not be possible.

6) Quit Terminates the program.
*Note: The initialise option does not prompt the user before resetting
the system parameters. Currently, there is no way to recover lost data
whether inadvertent or not.

Table 6. Main-menu's options and their purpose.

As with all the menu procedures, the mainmenu procedure uses I while loop and a

case statement to control the option selections. The the while loop provides for errors In

selection (an accidental selection will not crash the program).

A.9.l.2 Setup Menu The setup menu provides the options for loading data

files and saving current system information to a data file (there are other options but their

"10An gavailable" option 1s an option that can be Initiated from the current menu,
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functions are somewhat limited.). The available options and their purposes are listed in

table 7.

Option Purpose

1) Load Dat Provides the capability to load a data file containng
a previously constructed system configuration,

2) Save Data Provides the capability for saving a system configu.
ration for use at another time.

3) Initialize Same option as listed in the main menu.

4) Alter Brings up the alter menu,
5)MinMn Return, control to the main menu,

6)Quit Terminates the program.

Table 7, Setup.menu's options and their purpose.

A,,1,3 Graph Menu The graph menu provides the options for viewing the

system and performing probability ratio graph manipulations. The available options and

their purposes are listed in table 8.

Option Purpose

1) Pie Displays the specified node as a pie chart where the
sections represent the conditional probabilities of the
embedded nodes,

2) Net Displays the specified node's miniaturized pie chart in
the lower corner and the embedded nodes as a con.
nected graph.

3) Explode Performs the aggregation function on the specified
node and displays the parent node's resulting con-

____ __ figuration in the net representation.
4) Cluster Performs disaggregation on the two specified nodes

and displays the parent node's resulting configuration
in the net representation.

5) Find path Finds the connection path between the two specified
nodes.

6) Tranigulate Performs triangulation with the two specified nodes,

Table 8. Graph-menu's options and their purpose,
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A.S.1.4 Create Menu The create menu provides the options for creating sys.

tern objects (nodes and arcs) and setting their parameters. The available options and their

purposes are listed In table 9.

Option Purpose

1) Node Creates a new node and prompts the user for the
node's parameters.

2) (No option currently available)

3) Ar; Creates a new arc and prompts the user for the arc's
paraneters.

4) (No option currently available)

5) Main Menu Returns control to the main menu.
6) Quit Terminates the program.

Table 9. Create-menu's options and their purpose.

A..1., Alter Menu The alter menu was Intended to provide options for al.

tering the objects' (nodes' or arcs') parameters, As It now exists, only arc parameters

can be altered through this menu. The available options and their purposes are listed In

table 10,

Option Purpose

1) Hypothesis (Currently, this option has no purpose.)

2) Evidence (Currently, this option has no purpose.)
3) Arc Initiates the alter-arc mentu.
4)Cluster PerForms disaggregatlon on the two specified nodes

and displays the parent node's resulting configuration
in the net representation (same option as in the graph
menu).

5) Main Menu Returns control to the main menu.
6)Quit Terminates the program.

Table 10. Alter-menu's options and their purpose.

A.1.1.6 AlterArc Menu The alterarc menu was intended to be one of three

submenus which would provide options for altering the objects' parameters. Currently, It
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is the only one of these submenus which exists, and It really has no value in the current

system. The available options and their purposes are listed In table 11.

Option Purpose

1) Delete (Currently, this option has no purpose.)
2) Reverse Reverses the specified arc's orientation (this function

can be accomplished with the triangulation option
and, In any cue, is of little practical use.).

3) Change Ratio (Currently, this option Is non.functioning)
4) (No option currently available)
5 Mai~n Menu 'kturne control to the main menu,
6) Quit Terminates the program.

Table 11. AlterArc-menu'. options and their purpose.

A4.4. Starting Out Once the program Is loaded and running, the main menu should

mysteriously appear in vlewport 2. At this point you can either load a file or begin from

scratch. To load a file choose the "Setup" option to Initiate the setup menu; from the

setup menu, choose "Load Data." You will be prompted for the name of the data file to

load. If you enter nothing then the program will return and you can continue as if nothing

happened. However, If you enter a file, then that file must exist and contain information

in the correct syntax for the program to use or the program will crash (there is no error

checking Involved with loading data). To begin from scratch choose the "Create" option

to Initiate the create menu. To create system all that Is needed is the "Node" option III

the create menu. Using the node option will prompt for all the Information needed during

creation, Several system aspects are important: 1) A parent node must contain at least

two nodes to be a parent (a node cannot contain a single node). 2) A node must be part

of a connected graph (a node has to be connected to another node by an arc), The node

optiun prompts for all the necessary information.

The best way to become familiar with the process is to create and run through an

example. Figure 5 in Chapter III show a simple example; you may want to use this figure

to check your results,
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Appendix B. Procedure and Function Reference Lookup

This appendix contains the descriptions of the global variables, and the procedures

and functions contained In table 12,1 The global variables are arranged by units, and the

procedures and functions are arranged alphabetically.

B.1 Global Variable#

Ports Global variablesJJ

GraphDriver Used to detect the system type,

GraphMode Used to detect the system graphics mode,
MaXX, Used for relative positioning within different vlewports.
MaxY
BC, FC These are the current port background and text colors respectively,
CP The current port number Is stored here,
CpX1, epYl Current cursor position for port 1,
epX4, cpY4 Current cursor position for port 4.
X2, X3, X4 Horizontal scaling variables for separating the screen into the four

viewports.
Y2, Y3 Vertical scaling variables for separating the screen into the four view-

ports.
xAsp, yAsp Horizontal and vertical screen resolutions,
AspectRatio Screen aipectratio used for graphics.

i Menu Global variables

Quit Used for menu control between and within menu procedures.

lI Part-s 1g al varla=es II

N, A Arrays for the "node" and "arc" pointers.
Ni, Al Counters to keep track of the total number of nodes and arcs that

have been created,

'Most of the procedures from the Menu Unit have been omitted because they are of the salne (ortitat
and serve as control mechanisms, They are not generally applicable procedures,
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Col Used to assign nodes different colors as they are created.

ActiveN List of active system nodes,
ActlveA List of active system arcs,
InActiveN List of deactivated nodes,
InActlveA List of deactivated arcs,
ViAra List of the visible arcs so they are only displayed once.
VlaNode List of the visible nodes so arcs are only displayed between visible

nodes,
Problet List of the nodes whose "Prob" parameters have been set so they are

only set once during an Iteration.
Lnode The lut created node, used to automatically create new arcs,
Onode If there are two newly created nodes that have not yet been connected

by an arc, then this is the other node.

11 Show Global variables

Goal Used In triangulation, this Is the goal node.
Path List variable used to build the path between two nodem, Used for

triangulation.
Cares List of arcs connected to a node, Used in for triangulation.
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B.2 Procedure# and Functions

Probability Ratio Graph Software Procedures IJ
Append Let . kenode . Parts
AppendT Let MakePath Show
Choice Ports Memlut Lot
Cluster Show Minlit Lot
Common Lit Net Show
Connected Show NewArc Parts
Delmem Lit Newnode Parts
DrawArc Show Nummem Lit
Drawple Show OtherNode Parts
Explode Show Out Ports
FIgNet Show OutT Ports
FigProbi Show Pie Show
FigRatio Show Rest Let
FilJBk Ports RestT Lot
FindPath Show RevirrseArc Show
First Lit Savedata Parts
FirstT Lit SetPort Ports
Growup Show SetProbs Show
HideArc Show ShowArc Show
InitParts Parts Showmenu Menu
InitPorts Ports Sum Show
Loaddata Parts Triangulate Show
Makearc Parts Which Parts

Table 12. Procedures used in probability ratio graph software.

The procedure and function look-up follows the order in table 12. They are listed In

the following format (only the relevant items are listed with each entry).

U Sample procedure U'nF contained in

Function What it does
Declaration How it's declared
Result type What It returns if It's a function
Remarks General information about the procedure
Restrictions Things to be aware of
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See also Related procedures/functions

Example Sample program or code fragment

This guide only lists procedures and functions contained In the units Let, Ports,

Parts, Show, and Menu. A Turbo Pacal guide should be referenced for procedures and

functions contained In the original Turbo Pascal software.

II Append function : LBt

Function Returns the concatenation of X and Y in list format.
Declaration append(X, Y : String)

Result type String
Remarks This function joins the two specified strings in list format. That is,

with a comma separating the two strings,

Restrictions The final string length Is limited to 255 characters. If the two spec-
ified strings lengths are greater than 254 when added together (254
because a comma is Inserted between the two strings), then the re.
turned string will be truncated at the 255th character.

See also AppendT
Example X :ac,"If.

Y - g,th,sdf, v;
S :i append(X, Y);
in this example, S = a,c,e,f,g,th,udf,v

AppendT function Lst

Function Concatenates two strings separated with a blank space,

Declaration appendt(X, Y : String)

Result type String
Remarks This function joins the two specified strings In in sentence format.

That is, with a space separating the two strings, It is used for sup-
porting the word wrapping capability while In the graphics mode.

Restrictions String lengths cannot exceed 255, This is a limitation of Turbo Pascal
string data types. If the two string lengths exceed 254 when added
(254 because a space is inserted between them), then the reaulting
string will be truncated at the 255th position.
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See also Append, FirstT, RestT

Example X := 'This unit is';
Y :- 'made up of...':
S :m appendt(X, Y);
In this example, S - 'This unit Is made up of...'

U Choiie function Ports I

Function Accepts user Input without disrupting the graphics mode.
Declaration choice
Result type String
Remarks This function enables the system to read, echo, and delete characters

during input in the graphics mode without disturbing the graphics
environment,

i Cluster procedure Show [w

Function Performs the "disaggregation" function of probability ratio
graphs.

Declaration cluster
Remarks This procedure gathers two nodes (vertices) in to one node, After

performing all of the necessary administrative functions on the sys.
tem variables it redisplays the new system configuration in the net
representation,

See also Explode, Triangulate

II Common function Lat il

Function Checks if there any common members In the two specified
lists.

Declaration common(lstl, lst2 : String)

Result type Boolean
Remarks This function operates on lists where the mncmbers are delineated

with commas.
See also Memist
Example Istl ff 'a,s,d,f';

lst2 := 'w,r,t,d,q';
common(lstl, lst2);

In this example, common - true
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IIConnected function SoYJ

Function Checks if two specified nodes are connected by an arc,

Declaration connected(nodel, node2 : String)
Result type Boolean
Remarks This function checks the two specified nodes' connected arc (ConArc)

lists for common members,

IIDelmem function "Lat

Function Deletes all instances of X from the list Y.
Declaration deaiem(X, Y i String)

Result type String
Remarks This function operates on lists where the members are delineated

with commas,
Example X a. a-

Y a. asfrtad;
S :- delmem(X, Y)j
In this example, S - s,f,r,t,d

I DrawArc procedure - .. ..

Function Draws the specified arc in the specified color,
Declaration drawarc(S : String; K - Integer)

Remarks This procedure performs the calculations and Initiate, the graphics
for displaying arcs,

See also ShowArc, llideArc

D P|e procedure .... ___... _,_"

Function Draws the specified node as a pie chart,
Declaration drawple(S : String)

Remarks This procedure displays the specified node a* a p10 ciart wil1i thi
pie slices representing the nodes in the embedded graph.

See also Pie, Net, FIgProbm
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II Explode procedure Show

Function Performs the "aggregation" function of probability ratio
graphs.

Declaration explode(S : String)

Remarks This procedure replaces the specified node with its embedded graph.
The embedded graph's conditional representatlon is transformed into
a Joint representation.

See also Cluster, Triangulate

FigNet procedure Sho

Function Sets the "Prob" relative to the arc ratios.
Declaration fignet(C, S : String)
Remarks This procedure sets the "Prob" values of the members of a connected

graph relative to the ratios of the arcs connecting the graph,
See also FigProbs

FgP rohs procedure Show

Function Initiates the update of the node "Probs" to reflect the con.
necting arc ratios.

Declaration figprobs(S : String)
Remarks This procedure is used in conjunction with FigNet, Sum, and Set.

Probe to update the probabilities of a conuected graph.
See also FigNet, Sum, SetProbs

FigRatio function Show

Function k igures the ratio betweeni two bpecified nodes. connecting arc
ratios.

Declaration figratio(H : String)

Result type Real
Remarks This function uses the path generated by FindPath/MakePath to

figure the ratio between two nodes. It Is u'sed in the triangulation
procedure,

See also FindPath, MakePath, Triangulation
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L FIllBk procedure Portsi

Function Displays a filled polygon with a border.
Declaration fillbk(X1, Y1, X2, Y2, BC, TC : Integer)
Remarks This procedure Is used for setting up the different vlewports, and

scrolling functions and clearing vlewports. X1 and Y1 are the top
right coordinates of the polygon, and X2 and Y2 are the lower left
coordinates of the polygon. BC is the background color and TC is
the border and text color.

See also Out, InitPorts

FindPath procedure Showl

Function Finds the path between two nodes.
Declaration findpath
Remarks This procedure is used In conjunction with MakePath in the Trian.

gulate and Cluster procedures. The two nodes must be members of
the same connected graph.

See also MakePath, Triangulate, Cluster

IIFirst function Leti]

Function Returns the first member of a list.
Declaration first(X : String)

Result type String
Remarks This function' operates on lists where the members are delineated

with commas.
See also FIrstT, Rest, RestT
Example X := a,s,d,f;

S := first(X);
In this example, S = a

FirstT function LZt

Function Returns the first member of the specified list.
Declaration firstt(X : String)

Result type String
Remarks This function operates on lists where the members are delineated

with blank spaces,
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See aiso RestT
Example X :- the node Is not active ...'1;

S :=flrstt(X);
In this example, S = 'the'

~IGrowup procedure

Function Changes the "Parent" of embedded node. to their Grandpar-
ent.

Declaration growup(C, P : String)

Remarks This procedure Is used In conjunction with the explode procedure.
See also Explode

Hie rc proceduire =OW

Function Removes an are from the screen.
Declaration hideare(S : String)
Remarks This procedure draws over existing arcs In the background color ren-

dering tho Invisible.
See also DrawArc, ShowArc

InitParts procedure Partsj

Function Initializes system variables.

Declaration initparts
Remarks This procedure Initializes the systemn variables. If used while the

system hus data, the will be lost. It gives no warnings.

Init orts procedure orts

Function Initializes the system screen and sets the output variables,
Declaration initports
Remarks This procedure Initializes the screen and the output variables that

deal with the screen parameters..
See also HIMi~
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L oaddata procedure Parts

Function Reads a specified data file and recreates the system as read
from the file.

Declaration loaddata
Remarks This procedure retrieves data from the specified file and creates the

nodes and arcs specified in the file. The specified file must be in the
proper format or it will cause a runtime error. \

See also Savedata

MakeArc procedure Parts ,

Function Controls the input and output functions for creating a new
arc. siblings.

Declaration makearc
Remarks This procedure handles the input and output information gathering

function for arc creation. It checks the nodes to ensure that they
share the same parent, It will accept the ratio as a single number or
as a fraction (.6 or 1/2).

See also MakeNode, NewArc

MakeNode procedure

Function Controls input and output for creating a new node.
Declaration makenode
Remarks This procedure handles the input and output information gather.

Ing function for node creation, It queries for the needed Initial pa.-
rameters, checks for valid parenthood, and ensures the node will be
connected to a sibling node.

See also MakeArc, NewNode, OtherNode

MaRePath procedure S1how]1

Function Creates a list which represents the connection path between
the specified nodes,

Declaration makepath(H, T, Sa: String)
Remarks This procedure build a list of arcs which connects the specified nodes

(H and T). This Is a recursive procedure and "Sa" is a parameter
used for controlling the recursion,

See also FindPath
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I Memlst function L-t-[[

Funqtion Determines whether a string, X is a singular member of the
list, Y.

Declaration memlst(X, Y : String)

Result type Boolean
Remarks This function operates on lists where the members are delineated by

commas, If X or Y are empty, then the value of memlst is false.
See also Common
Example X :- &;

Y := cdasr;
if memlt(X, Y) then,.,

else,,.;
In this example, memlat = true

Mlnlst function .. t7]

Function Returns the specified list with all repeated members deleted.
Declaration minlist(X : String)
Result ty,)e String
Remarks This function operates on lists where the members are delineated

with commas.
Example X :w a,d,&,c,s,c;

S :m minlst(X);
In this example, S = a,d,c,s

Net procedure Show II
Function Displays the specified node's embedded graph as a connected

graph of pie charts,

Declaration net(S : String)

Remarks This procedure calculates the positlons of the children nodes of "S"
and displays the children as pie charts connected with arcs,

See also Pie

•NewArv procedure ••.. .. ...........

Function Initializes a new arc pointer and sets the new arc's parame.
ters.
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Declaration newarc(H, T ; String; R; Real)

Remarks This procedure creates a new arc and initializes the arc's parameters
and echos the arc's creation to vlewport 4. "H" is the head, "T" is
the tail, and "R" Is the ratio between them.

See also MakeArc, NewNode

Newl0ode procedure art.

Function Initializes a new node pointer and sets the new node's pa.
rameters,

Declaration newnode(Na, P : String)

Remarks This procedure creates a new node, initializes the node's parameters,
and echos the node's creation to viewport 4, "Na" In the node's name
and "P" is its Parent.

See also MakeArc, NewArc

II ' mmem function .'Lot I

Function Returns the number of members in a list,
Declaration nummem(S : String)

Result type Integer
Remarks This function operates on lists where the member. are delineated

with commas,
Example S:" a,s,d,f;

I :- nummem(S);

In this example, I - 4

SOhrNode procedure Puar-ts

Function This procedure Is called by MakeNode wheat the specified
parent contains no children,

Declaration othernode(P i String)

Remarks This procedure, Is called when a node Is created and the parent Is
otherwise childless, Parent nodes must contain at lueat two childron,

See also MakeNode

UOut proeadur-e- o

Function Outputs a list string with word wrapping to the current port,
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Declaration out(S : String)

Remarks This procedure outputs the string "S", which is a list where the
members are separated with commas, to the current port and enables
text wrapping while in the graphics mode,

See also OutT

SOutT procedurePot

Function Outputs a text string with word wrapping to the current port.

Declaration outt(S : String)

Remarks This procedure outputs the string "S", which is a list where the
members are separated with spaces, to the current port and enables
text wrapping while In the graphics mode.

See also OutT

II Pie procedure SHOW

Function Sets the position und else parameters for displaying a large
pie chart,

Declaration ple(S : String)

Remarks This procedure sets the position and radius for a large pie chart and
calls drawple to draw the actual chart,

See also Drawple, Net

Rest function ,stJ

Function Returns the spee.ifiet list with the first member doletuec,

Declaration rest(X)

Result type String

Remarks This function operates on lists where the members are delineated
with commas,

see also RestT, First, FIrit T

Example X im a,'sdf;
S IN rest(X)l
In this example, 8 a sod,f

Function Returns the specified list with the first member deleted,



Declaration restt(X : String)

Result type String
Remarks This function operates on lists where the members are delineated

with blank spaces,

See also FlrMtT
Example X :- 'the node Is not active.-.';

S :i restt(X);
In this example, S = 'node Is not active..'

IReverseAre procedure =O

Function Reverses a arec's orientation,
Declaration reversearc(S : String)

Remarks This procedure hides the specified arc, reverses its parameters, and
shows the new arc,

See also HideArc, ShowArc

f Savedata procedure Parts

Function Writes current system data to the specified file,

Declaration savedata
Remarks This procedure writes the active and inactive node lists, the active

arc list, the node index, the nodes' names and parsnts, and the arcs'
parameters to an Indicated file.

See also Loaddata

Set!otprodrep o e r o t

Function Chatgeol the active graphicie port.
Declaration setport(l t Integer)
Remarks Tise procedure changeS the active viewport to the speciliod port, It

handles all the stdntinistrative overhead involvnd with switchitlig the
active output port

setp robs procedure llii Wi

Function Normialiss the "Prob" values over a comincted graph,

Declaration sctprobs(S i String)
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Remarks This procedure is used In conjunction with FigNet, Sum, and Fig.
Probe to update the probabilities of a connected graph.

Son also FigNet, Sum, FigProbs

W hwArc procedure Show

Function Draws the specified are In the color of the head node.
Declaration showarc(S : String)
Remarks This procedure ensures that the specified arc is connecting two nodes

that are Indeed visible. If the two nodes are visible, ShowArc draws
(by calling DrawArc) the arc In the head node's color and outputs
the ratio to port 4.

See also DrawArc, HideArc

Showmenu procedure Menu

Function Outputs the specified menu options to the menu port (2).
Declaration showmenu(S -, String)
Remarks This procedure outputs thes specified menu options to port 2. 'IS" Is a,

list with six elements. The elements represent the displayed options
for a Particular Menu

Sum function gho;w 1

Function Sums the "Prob" values for a connected graph.
Declaration sum(S i String)
Result type Real
Remarks Trids procedure Is used In normalizing the "Plrob" values of a con.*

nected graph. It calculatesi the sum of the "Prob" values.
See also FigProbs, FigNet, SetP robs

V fransulate proi-2re"o

Function Performs tite "trianigulatioun" function of probability ratio
graphs.

Declaration triangulate
Remarks Thisl procedure prompts for tite node between which to triangulate.

It uses FindPitth and Niakefath and presents thes path ho thes user
can choose which arc to replace.



See also Cluster, Triangulate

rVc fuction Part. IJ

Function Returns the numerical value of the specified index.
Declaration which(S : String)

Result type Integer
Remarks This function is used in the identification of the nodes and arcs. The

nodes and arcs are indexed in an array format and by retrieving the
numerical indox the record values can be retrieved and manipulated.

Example S :m 'N12'
T := which(S)
In this example, T = 12.
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""' Incorporating techniques for coping with uncertainty in the decision support systems

has proven to be a fertile environment for creative ideas. Representationis of uncertainty

abound and no representation can be said to be inherently incorrect, From a theoretical

standpoint, a viable solution must be coherent and logically consistent. Probability theory

demonstrates these characteristics while, as of yet, other methods do not.

The purpose of this study was to investigate specific topics in uncertainty reasoning:

1) Probability ratio graphs as a representation of the probability model; 2) Dealing with

missing information when system parameters are left unspecified- 3) Investigating the

difference between probabilistic and causal independence; and, 4) Characterizing secondary

uncertainty as spurious evidence and including it In the Inference process.

It was shown that probability ratio graphs are a viable method for representing

uncertainty, and a method for representing Independence with probability ratio graphs is

presented. Assuming probabilistic independence for missing Information Is shown to have

intuitive and computational benefits; also shown is that where secondary uncertainty is

included In the inference process has great Impact on the computational comple.xdty of an

inference process. )
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